errata logo graphic

Found 16 records.

Status: Verified (6)

RFC2328, "OSPF Version 2", April 1998

Source of RFC: ospf (rtg)

Errata ID: 2953

Status: Verified
Type: Technical

Reported By: Joel Gannett
Date Reported: 2011-08-31
Verifier Name: Stewart Bryant
Date Verified: 2011-09-02

Section 3.4 says:

                   Destination   RT3 adv.   RT4 adv.
                   _________________________________
                   Ia,Ib         20         27
                   N6            16         15
                   N7            20         19
                   N8            18         18
                   N9-N11,H1     29         36
                   _________________________________
                   RT5           14         8
                   RT7           20         14

              Table 6: Destinations advertised into Area 1
                        by Routers RT3 and RT4.

It should say:

                   Destination   RT3 adv.   RT4 adv.
                   _________________________________
                   Ia,Ib         20         27
                   N6            16         15
                   N7            20         19
                   N8            18         25
                   N9-N11,H1     29         36
                   _________________________________
                   RT5           14         8
                   RT7           20         14

              Table 6: Destinations advertised into Area 1
                        by Routers RT3 and RT4.

Notes:

The distance from RT4 to N8 should be changed from 18 to 25. Unless there is a virtual link between RT7 and RT10, the shortest path from RT4 to N8 is 25, not 18. Although a virtual link from RT7 and RT10 is discussed in the last paragraph of Section 3.4, it is not assume part of the network design. Moreover, this change is needed to make the N9-N11,H1 row consistent with the N8 row, as each entry in the N9-N11,H1 row must be 11 greater than the same-column entry in the N8 row.


Errata ID: 3746

Status: Verified
Type: Technical

Reported By: Ramakrishna DTV
Date Reported: 2013-10-09
Verifier Name: Stewart Bryant
Date Verified: 2013-10-10

Throughout the document, when it says:

*. Section 3.3. (Classification of routers) says:

        AS boundary routers
            A router that exchanges routing information with routers
            belonging to other Autonomous Systems.  Such a router
            advertises AS external routing information throughout the
            Autonomous System.  The paths to each AS boundary router are
            known by every router in the AS.  This classification is
            completely independent of the previous classifications: AS
            boundary routers may be internal or area border routers, and
            may or may not participate in the backbone.

*. Section 10.6 (Receiving Database Description Packets) says:

	      When the router accepts a received Database Description Packet
        as the next in sequence the packet contents are processed as
        follows.  For each LSA listed, the LSA's LS type is checked for
        validity.  If the LS type is unknown (e.g., not one of the LS
        types 1-5 defined by this specification), or if this is an AS-
        external-LSA (LS type = 5) and the neighbor is associated with a
        stub area, generate the neighbor event SeqNumberMismatch and
        stop processing the packet.

*. Section 13. (The Flooding Procedure) says:

    (3) Else if this is an AS-external-LSA (LS type = 5), and the area
        has been configured as a stub area, discard the LSA and get the
        next one from the Link State Update Packet.  AS-external-LSAs
        are not flooded into/throughout stub areas (see Section 3.6).

    (4) Else if the LSA's LS age is equal to MaxAge, and there is
        currently no instance of the LSA in the router's link state
        database, and none of router's neighbors are in states Exchange

It should say:

*. Section 3.3. (Classification of routers) should say:

        AS boundary routers
            A router that exchanges routing information with routers
            belonging to other Autonomous Systems.  Such a router
            advertises AS external routing information throughout the
            Autonomous System.  The paths to each AS boundary router are
            known by every router in the AS (except stub areas).  This
            classification is
            completely independent of the previous classifications: AS
            boundary routers may be internal or area border routers, and
            may or may not participate in the backbone.

*. Section 10.6 (Receiving Database Description Packets) should say:

	      When the router accepts a received Database Description Packet
        as the next in sequence the packet contents are processed as
        follows.  For each LSA listed, the LSA's LS type is checked for
        validity.  If the LS type is unknown (e.g., not one of the LS
        types 1-5 defined by this specification), or if this is an AS-
        external-LSA (LS type = 5) and the neighbor is associated with a
        stub area, or if this is a type-4 summary LSA and the neighbor
		is associated with a stub area, generate the neighbor event
        SeqNumberMismatch and stop processing the packet.

*. Section 13. (The Flooding Procedure) should say:

There should be an additional step in between steps 3 and 4  in
Section 13. The additional step below is denoted 3.5:

    (3) Else if this is an AS-external-LSA (LS type = 5), and the area
        has been configured as a stub area, discard the LSA and get the
        next one from the Link State Update Packet.  AS-external-LSAs
        are not flooded into/throughout stub areas (see Section 3.6).

    (3.5) Else if this is a type-4 Summary LSA (LS type = 4), and the
        area has been configured as a stub area, discard the LSA and get
        the next one from the Link State Update Packet.  Type-4 Summary
        LSAs are not flooded into/throughout stub areas.

    (4) Else if the LSA's LS age is equal to MaxAge, and there is
        currently no instance of the LSA in the router's link state
        database, and none of router's neighbors are in states Exchange

Notes:

This whole note is regarding stub areas.

RFC 2328 is already consistent with respect to AS-external-LSAs
(LS type =5). The RFC explicitly indicates that they should be neither
sent nor received in stub areas.

But RFC 2328 seems to have some omissions with respect to type-4
Summary LSA (LS type = 4). The RFC explicitly indicates that these
LSAs should never be sent in stub areas. But it does not mention what
should be done if these LSAs are received in stub areas.

The above updates try to remedy this omission.

If the neighbor is associated with a stub area, then we should never
receive a type-4 summary LSA from that neighbor. Here are the relevant
quotes from the RFC:

Section 12.4.3.1.(Originating summary-LSAs into stub areas):

"As specified in Section 12.4.3, Type 4 summary-LSAs
(ASBR-summary-LSAs) are never originated into stub
areas."

Section 4.2. (AS external routes):

"To utilize external routing information, the path to all routers
advertising external information must be known throughout the AS
(excepting the stub areas). For that reason, the locations of
these AS boundary routers are summarized by the (non-stub) area
border routers."


This is an omission from RFC 2328.

http://www.ietf.org/mail-archive/web/ospf/current/msg06720.html


Errata ID: 3974

Status: Verified
Type: Technical

Reported By: Mike Dubrovsky
Date Reported: 2014-04-24
Verifier Name: Alia Atlas
Date Verified: 2014-05-12

Section 13 says:

    (6) Else, if there is an instance of the LSA on the sending
        neighbor's Link state request list, an error has occurred in the
        Database Exchange process.  In this case, restart the Database
        Exchange process by generating the neighbor event BadLSReq for
        the sending neighbor and stop processing the Link State Update
        packet.

    (7) Else, if the received LSA is the same instance as the database
        copy (i.e., neither one is more recent) the following two steps
        should be performed:

        (a) If the LSA is listed in the Link state retransmission list
            for the receiving adjacency, the router itself is expecting
            an acknowledgment for this LSA.  The router should treat the
            received LSA as an acknowledgment by removing the LSA from
            the Link state retransmission list.  This is termed an
            "implied acknowledgment".  Its occurrence should be noted
            for later use by the acknowledgment process (Section 13.5).

        (b) Possibly acknowledge the receipt of the LSA by sending a
            Link State Acknowledgment packet back out the receiving
            interface.  This is explained below in Section 13.5.

It should say:

    (6) Else, if the received LSA is the same instance as the database
        copy (i.e., neither one is more recent) the following two steps
        should be performed:

        (a) If the LSA is listed in the Link state retransmission list
            for the receiving adjacency, the router itself is expecting
            an acknowledgment for this LSA.  The router should treat the
            received LSA as an acknowledgment by removing the LSA from
            the Link state retransmission list.  This is termed an
            "implied acknowledgment".  Its occurrence should be noted
            for later use by the acknowledgment process (Section 13.5).

        (b) Possibly acknowledge the receipt of the LSA by sending a
            Link State Acknowledgment packet back out the receiving
            interface.  This is explained below in Section 13.5.

    (7) Else, if there is an instance of the LSA on the sending
        neighbor's Link state request list, an error has occurred in the
        Database Exchange process.  In this case, restart the Database
        Exchange process by generating the neighbor event BadLSReq for
        the sending neighbor and stop processing the Link State Update
        packet.

Notes:

The problem arises when the routing domain has two instances of LSA
with the same sequence number and the same checksum,
but with an age difference bigger than MaxAgeDiff.

The above could take place in multiple scenarios. Here are two examples:

1) There is a demand circuit somewhere in the routing domain
2) The router lost its ASBR status and therefore flushed the self-originated Type 5 LSAs
but later on gained the ASBR status back and re-originated Type 5.
If the network was partitioned, each partition can have two instances of LSA
with an age difference bigger than MaxAgeDiff.

The two instances of LSA can temporarily prevent the adjacency formation.

Consider the example below:


Topology
========


RT1 ----- RT2

Initial state:
==============
The physical link between RT1 and R2 just came up
The routers are about to form ospf adjacency.

Initial link-state databases:
=============================
R1 ospf database has LSA 10.0.0.1 age 910 seq # 0x80000001
R2 ospf database has the same LSA 10.0.0.1 age 9 seq # 0x80000001

RT1 Event Sequence:
===============

RT1 is starting to form adjacency with RT2.

1) During the Database Exchange, RT2's LSA instance is more recent because of more than 900 (MaxAgeDiff) seconds age difference (section 13.1 of RFC 2328).
2) So RT1 requests the LSA
3) RT2 sends the LSA after incrementing the age by 1 (InfTransDelay).
4) When the LSA instance arrives to RT1, it is identical (the difference is exactly 900 seconds now).

So RT1 aborts Loading according to step (6) of section 13.


Solution:
=========

Swap steps (6) and (7) of section 13.

Acee Lindem adds:
"This situation comes into play when a router views an LSA as being
more recent when the LSA is requested (via Link-State Request) but as the
same instance when the LSA is actually received."


Errata ID: 4022

Status: Verified
Type: Technical

Reported By: Alexander Okonnikov
Date Reported: 2014-06-23
Verifier Name: Alia Atlas
Date Verified: 2014-06-24

Section 10.5 says:

When receiving an Hello Packet from a neighbor on a broadcast,
Point-to-MultiPoint or NBMA network, set the neighbor
structure's Neighbor ID equal to the Router ID found in the
packet's OSPF header. For these network types, the neighbor
structure's Router Priority field, Neighbor's Designated Router
field, and Neighbor's Backup Designated Router field are also
set equal to the corresponding fields found in the received
Hello Packet; changes in these fields should be noted for
possible use in the steps below. When receiving an Hello on a
point-to-point network (but not on a virtual link) set the
neighbor structure's Neighbor IP address to the packet's IP
source address.

It should say:

When receiving an Hello Packet from a neighbor on a broadcast,
Point-to-MultiPoint or NBMA network, set the neighbor
structure's Neighbor ID equal to the Router ID found in the
packet's OSPF header. For broadcast and NBMA network types, the neighbor
structure's Router Priority field, Neighbor's Designated Router
field, and Neighbor's Backup Designated Router field are also
set equal to the corresponding fields found in the received
Hello Packet; changes in these fields should be noted for
possible use in the steps below. When receiving an Hello on a
point-to-point network (but not on a virtual link) set the
neighbor structure's Neighbor IP address to the packet's IP
source address.

Notes:

This is unnecessary in case of Point-to-MultiPoint network type to hold neighbor's Router Priority, DR, and BDR values.


Errata ID: 3734

Status: Verified
Type: Editorial

Reported By: Ramakrishna DTV
Date Reported: 2013-09-23
Verifier Name: Stewart Bryant
Date Verified: 2013-10-10

Section 8.2 says:

            The AuType specified in the packet must match the AuType
            specified for the associated area.

It should say:

            The AuType specified in the packet must match the AuType
            specified for the associated interface.

Notes:

In OSPFv2, authentication is configured per interface and not per area.
Appendix D clarifies this: "The authentication type is configurable on a per-interface
(or equivalently, on a per-network/subnet) basis."


Errata ID: 4023

Status: Verified
Type: Editorial

Reported By: Alexander Okonnikov
Date Reported: 2014-06-24
Verifier Name: Alia Atlas
Date Verified: 2014-06-24

Section 12.4.1 says:

o Otherwise, the link descriptions added to the router-LSA
depend on the OSPF interface type. Link descriptions
used for point-to-point interfaces are specified in
Section 12.4.1.1, for virtual links in Section 12.4.1.2,
for broadcast and NBMA interfaces in 12.4.1.3, and for
Point-to-MultiPoint interfaces in 12.4.1.4.

It should say:

o Otherwise, the link descriptions added to the router-LSA
depend on the OSPF interface type. Link descriptions
used for point-to-point interfaces are specified in
Section 12.4.1.1, for broadcast and NBMA interfaces in 12.4.1.2,
for virtual links in Section 12.4.1.3, and for 
Point-to-MultiPoint interfaces in 12.4.1.4.

Notes:

Incorrect references.


Status: Held for Document Update (4)

RFC2328, "OSPF Version 2", April 1998

Source of RFC: ospf (rtg)

Errata ID: 3645

Status: Held for Document Update
Type: Technical

Reported By: Preet D'Souza
Date Reported: 2013-06-07
Held for Document Update by: Stewart Bryant
Date Held: 2013-09-19

Section 2.1.2 says:

Figure 2: A sample Autonomous System

                                **FROM**

                 |RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|
                 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|N3|N6|N8|N9|
              ----- ---------------------------------------------
              RT1|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
              RT2|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
              RT3|  |  |  |  |  |6 |  |  |  |  |  |  |0 |  |  |  |
              RT4|  |  |  |  |8 |  |  |  |  |  |  |  |0 |  |  |  |
              RT5|  |  |  |8 |  |6 |6 |  |  |  |  |  |  |  |  |  |
              RT6|  |  |8 |  |7 |  |  |  |  |5 |  |  |  |  |  |  |
              RT7|  |  |  |  |6 |  |  |  |  |  |  |  |  |0 |  |  |
          *   RT8|  |  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |
          *   RT9|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
          T  RT10|  |  |  |  |  |7 |  |  |  |  |  |  |  |0 |0 |  |
          O  RT11|  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |0 |
          *  RT12|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
          *    N1|3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N2|  |3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N3|1 |1 |1 |1 |  |  |  |  |  |  |  |  |  |  |  |  |
               N4|  |  |2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N6|  |  |  |  |  |  |1 |1 |  |1 |  |  |  |  |  |  |
               N7|  |  |  |  |  |  |  |4 |  |  |  |  |  |  |  |  |
               N8|  |  |  |  |  |  |  |  |  |3 |2 |  |  |  |  |  |
               N9|  |  |  |  |  |  |  |  |1 |  |1 |1 |  |  |  |  |
              N10|  |  |  |  |  |  |  |  |  |  |  |2 |  |  |  |  |
              N11|  |  |  |  |  |  |  |  |3 |  |  |  |  |  |  |  |
              N12|  |  |  |  |8 |  |2 |  |  |  |  |  |  |  |  |  |
              N13|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
              N14|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
              N15|  |  |  |  |  |  |9 |  |  |  |  |  |  |  |  |  |
               H1|  |  |  |  |  |  |  |  |  |  |  |10|  |  |  |  |

It should say:

Figure 2: A sample Autonomous System

                                **FROM**

                 |RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|
                 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|N3|N6|N8|N9|
              ----- ---------------------------------------------
              RT1|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
              RT2|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
              RT3|  |  |  |  |  |6 |  |  |  |  |  |  |0 |  |  |  |
              RT4|  |  |  |  |8 |  |  |  |  |  |  |  |0 |  |  |  |
              RT5|  |  |  |8 |  |6 |6 |  |  |  |  |  |  |  |  |  |
              RT6|  |  |8 |  |7 |  |  |  |  |5 |  |  |  |  |  |  |
              RT7|  |  |  |  |6 |  |  |  |  |  |  |  |  |0 |  |  |
          *   RT8|  |  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |
          *   RT9|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
          T  RT10|  |  |  |  |  |7 |  |  |  |  |  |  |  |0 |0 |  |
          O  RT11|  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |0 |
          *  RT12|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
          *    N1|3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N2|  |3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N3|1 |1 |1 |1 |  |  |  |  |  |  |  |  |  |  |  |  |
               N4|  |  |2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N6|  |  |  |  |  |  |1 |1 |  |1 |  |  |  |  |  |  |
               N7|  |  |  |  |  |  |  |4 |  |  |  |  |  |  |  |  |
               N8|  |  |  |  |  |  |  |  |  |3 |2 |  |  |  |  |  |
               N9|  |  |  |  |  |  |  |  |1 |  |1 |1 |  |  |  |  |
              N10|  |  |  |  |  |  |  |  |  |  |  |2 |  |  |  |  |
              N11|  |  |  |  |  |  |  |  |3 |  |  |  |  |  |  |  |
              N12|  |  |  |  |8 |  |2 |  |  |  |  |  |  |  |  |  |
              N13|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
              N14|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
              N15|  |  |  |  |  |  |9 |  |  |  |  |  |  |  |  |  |
               H1|  |  |  |  |  |  |  |  |  |  |  |10|  |  |  |  |
               Ia|  |  |  |  |  |  |  |  |  |5 |  |  |  |  |  |  |
               Ib|  |  |  |  |  |7 |  |  |  |  |  |  |  |  |  |  |

Notes:

Notes:

section 2.1.2

Page 20, Figure 2 : A sample Autonomous System.
Two additions have been made to the orginal text which are reflected in the Corrected text.
The last two rows for interfaces Ia and Ib have been added.
The reason for the same is as explained below.

By definition of point-to-point links under OSPF, for serial interfaces defined by IP addresses, router RT6 should advertise a stub network to Ib whereas router RT10 should advertise a stub network to Ia .

Verifier's note: RFC 2328 is not wrong without the stubs links.
However, it does no harm to include them.

This table should be looked at in any future revision of this
RFC.


Errata ID: 2394

Status: Held for Document Update
Type: Editorial

Reported By: Andrea Ceschia
Date Reported: 2010-07-29
Held for Document Update by: Stewart Bryant
Date Held: 2012-10-26

Section 3.4. says:

Table 5: Backbone distances calculated by Routers RT3 and RT4

                              dist  from   dist  from
                              RT3          RT4

                   to  Ia     20           27
                   to  Ib     15           22

It should say:

Table 5: Backbone distances calculated by Routers RT3 and RT4.

                              dist  from   dist  from
                              RT3          RT4

                   to  Ia     15           22
		   to  Ib     20           27

Notes:

From RT3 and RT4 perspective the Ia is the nearest interface while Ib is at the remote side of the link connecting RT6 to RT10.


Errata ID: 1420

Status: Held for Document Update
Type: Editorial

Reported By: St├ęphane Bortzmeyer
Date Reported: 2008-05-11
Held for Document Update by: Stewart Bryant

Section 11.3 says:

The routing table entries changes that
would be caused by the addition of this virtual link are shown
in Table 14.


It should say:

N/A

Notes:

But Table 14 is exiled in another section, section 12, where it has nothing to do. I assume some processor tried to avoid splitting the table and displaced it too far.


Errata ID: 1833

Status: Held for Document Update
Type: Editorial

Reported By: Dande Rajasekhar
Date Reported: 2009-08-19
Held for Document Update by: Stewart Bryant

Section 2.1.1 says:

Figure 1b illustrates the link-state database representation
	    of a Point-to-MultiPoint network. On the left side of the
	    figure, a Point-to-MultiPoint network is pictured. It is
	    assumed that all routers can communicate directly, except
	    for	routers	RT4 and	RT5. I3	though I6 indicate the routers'

It should say:

Figure 1b illustrates the link-state database representation
	    of a Point-to-MultiPoint network. On the left side of the
	    figure, a Point-to-MultiPoint network is pictured. It is
	    assumed that all routers can communicate directly, except
	    for	routers	RT4 and	RT5. I3	through I6 indicate the routers'

Notes:

Should be I3 *through* I6


Status: Rejected (6)

RFC2328, "OSPF Version 2", April 1998

Source of RFC: ospf (rtg)

Errata ID: 1745

Status: Rejected
Type: Technical

Reported By: Wenhu Lu
Date Reported: 2009-03-27
Rejected by: Stewart Bryant
Date Rejected: 2012-10-26

Section Appendix E says:

In the paragraph that starts with: "The above algorithm assumes that all"

                                 The algorithm also assumes that no
    network exists having an address equal to another network's
    broadcast address.

It should say:

                                 The algorithm also assumes that if
    one of the conflicting networks is of IP host mask, its LSA
    origination is suppressed. The choice of the suppressing algorithm
    again is a local decision. However, the suppressed LSA MUST be
    originated if the conflicting network becomes withdrawn.

Notes:

The current algorithm will derive an unchanged ID
if one of the conflicting networks is of IP host mask.
This will cause problems that the algorithm try to solve.

On the other hand, the perfect algorithm for
LSID collision resolution does not exist in
that a flat address space cannot accommodate
all of the overlaid supernet/subnet IDs.
For example,
route1 - 10.0.0.0/32
route2 - 10.0.0.1/32
route3 - 10.0.0.0/31
There is no way to originate 3 LSAs with distinct LSIDs.

Thus though in majority cases, LSID collision even
with host route is resolvable, the suppressing
mechanism is still inevitable.
--VERIFIER NOTES--
This text is a change that should be taken through the working group process, as it seems to modify functionality.


Errata ID: 2951

Status: Rejected
Type: Technical

Reported By: Joel Gannett
Date Reported: 2011-08-31
Rejected by: Stewart Bryant
Date Rejected: 2011-09-02

Section 3.4 says:

                   Destination   RT3 adv.   RT4 adv.
                   _________________________________
                   Ia,Ib         20         27
                   N6            16         15
                   N7            20         19
                   N8            18         18
                   N9-N11,H1     29         36
                   _________________________________
                   RT5           14         8
                   RT7           20         14

              Table 6: Destinations advertised into Area 1
                        by Routers RT3 and RT4.

It should say:

                   Destination   RT3 adv.   RT4 adv.
                   _________________________________
                   Ia,Ib         20         27
                   N6            16         15
                   N7            20         19
                   N8            18         18
                   N9-N11,H1     29         29
                   _________________________________
                   RT5           14         8
                   RT7           20         14

              Table 6: Destinations advertised into Area 1
                        by Routers RT3 and RT4.

Notes:

The distance from RT4 to N9-N11,H1 should be changed from 36 to 29 to be consistent with the row above that, which shows the distance from RT3 to N8 and RT4 to N8 as the same value, 18. The length 18 path from RT3 to N8 is RT3-RT6-RT10-N8, while the length 18 path from RT4 to N8 is RT4-RT5-RT7-RT10-N8. The summarized N9-N11,H1 network is a distance 11 beyond that, or 29 in both cases. The length 29 path from RT3 to N9-N11,H1 is RT3-RT6-RT10-RT11-(N9-N11,H1), and the length 29 path from RT4 to N9-N11,H1 is RT4-RT5-RT7-RT10-RT11-(N9-N11,H1).
--VERIFIER NOTES--
Joel made an error in posting this erratum. He posted a corrected erratum (2953) to which the reader is referred.


Errata ID: 3644

Status: Rejected
Type: Technical

Reported By: Preet D'Souza
Date Reported: 2013-06-07
Rejected by: Stewart Bryant
Date Rejected: 2013-09-19

Section 2.1.2 says:

                                       **FROM**

                 |RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|
                 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|N3|N6|N8|N9|
              ----- ---------------------------------------------
              RT1|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
              RT2|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
              RT3|  |  |  |  |  |6 |  |  |  |  |  |  |0 |  |  |  |
              RT4|  |  |  |  |8 |  |  |  |  |  |  |  |0 |  |  |  |
              RT5|  |  |  |8 |  |6 |6 |  |  |  |  |  |  |  |  |  |
              RT6|  |  |8 |  |7 |  |  |  |  |5 |  |  |  |  |  |  |
              RT7|  |  |  |  |6 |  |  |  |  |  |  |  |  |0 |  |  |
          *   RT8|  |  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |
          *   RT9|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
          T  RT10|  |  |  |  |  |7 |  |  |  |  |  |  |  |0 |0 |  |
          O  RT11|  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |0 |
          *  RT12|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
          *    N1|3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N2|  |3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N3|1 |1 |1 |1 |  |  |  |  |  |  |  |  |  |  |  |  |
               N4|  |  |2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N6|  |  |  |  |  |  |1 |1 |  |1 |  |  |  |  |  |  |
               N7|  |  |  |  |  |  |  |4 |  |  |  |  |  |  |  |  |
               N8|  |  |  |  |  |  |  |  |  |3 |2 |  |  |  |  |  |
               N9|  |  |  |  |  |  |  |  |1 |  |1 |1 |  |  |  |  |
              N10|  |  |  |  |  |  |  |  |  |  |  |2 |  |  |  |  |
              N11|  |  |  |  |  |  |  |  |3 |  |  |  |  |  |  |  |
              N12|  |  |  |  |8 |  |2 |  |  |  |  |  |  |  |  |  |
              N13|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
              N14|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
              N15|  |  |  |  |  |  |9 |  |  |  |  |  |  |  |  |  |
               H1|  |  |  |  |  |  |  |  |  |  |  |10|  |  |  |  |
               

It should say:

                                    **FROM**

                 |RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|
                 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|N3|N6|N8|N9|
              ----- ---------------------------------------------
              RT1|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
              RT2|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
              RT3|  |  |  |  |  |6 |  |  |  |  |  |  |0 |  |  |  |
              RT4|  |  |  |  |8 |  |  |  |  |  |  |  |0 |  |  |  |
              RT5|  |  |  |8 |  |6 |6 |  |  |  |  |  |  |  |  |  |
              RT6|  |  |8 |  |7 |  |  |  |  |5 |  |  |  |  |  |  |
              RT7|  |  |  |  |6 |  |  |  |  |  |  |  |  |0 |  |  |
          *   RT8|  |  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |
          *   RT9|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
          T  RT10|  |  |  |  |  |7 |  |  |  |  |  |  |  |0 |0 |  |
          O  RT11|  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |0 |
          *  RT12|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
          *    N1|3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N2|  |3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N3|1 |1 |1 |1 |  |  |  |  |  |  |  |  |  |  |  |  |
               N4|  |  |2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N6|  |  |  |  |  |  |1 |1 |  |1 |  |  |  |  |  |  |
               N7|  |  |  |  |  |  |  |4 |  |  |  |  |  |  |  |  |
               N8|  |  |  |  |  |  |  |  |  |3 |2 |  |  |  |  |  |
               N9|  |  |  |  |  |  |  |  |1 |  |1 |1 |  |  |  |  |
              N10|  |  |  |  |  |  |  |  |  |  |  |2 |  |  |  |  |
              N11|  |  |  |  |  |  |  |  |3 |  |  |  |  |  |  |  |
              N12|  |  |  |  |8 |  |2 |  |  |  |  |  |  |  |  |  |
              N13|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
              N14|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
              N15|  |  |  |  |  |  |9 |  |  |  |  |  |  |  |  |  |
               H1|  |  |  |  |  |  |  |  |  |  |  |10|  |  |  |  |
               Ia|  |  |  |  |  |  |  |  |  |5 |  |  |  |  |  |  |
               Ib|  |  |  |  |  |7 |  |  |  |  |  |  |  |  |  |  |

Notes:

section 2.1.2

Page 20, Figure 2 : A sample Autonomous System.

The interfaces Ia and Ib have not been added to the directed graph.
By definition of point-to-point links under OSPF, for serial interfaces defined by IP addresses,
router RT6 should advertise a stub network to Ib whereas router RT6 should advertise a stub network to Ia .
--VERIFIER NOTES--
The reported made an error in this submission which was
corrected in Erratum 3645


Errata ID: 2632

Status: Rejected
Type: Editorial

Reported By: Dave Cowley
Date Reported: 2010-11-13
Rejected by: Stewart Bryant
Date Rejected: 2013-01-07

Section 11. says:

    Cost
        The link state cost of the path to the destination.  For all
        paths except type 2 external paths this describes the entire
        path's cost.  For Type 2 external paths, this field describes
        the cost of the portion of the path internal to the AS. 

It should say:

    Cost
        The link state cost of the path to the destination.  For all
        paths except type 2 external paths this describes the entire
        path's cost.  For Type 1 external paths, this field describes
        the cost of the portion of the path both internal and external
        to the AS.  

Notes:

'Type 2 cost' is listed in the subsequent 'field' description for section 11 (The Routing Table Structure).
--VERIFIER NOTES--
The text is correct as written in the RFC.


Errata ID: 2952

Status: Rejected
Type: Editorial

Reported By: Joel Gannett
Date Reported: 2011-08-31
Rejected by: Stewart Bryant
Date Rejected: 2013-01-07

Section 14.1 says:

Premature aging is also be used when unexpectedly receiving self-originated
LSAs during the flooding procedure (see Section 13.4).

It should say:

Premature aging might also be used when unexpectedly receiving self-originated
LSAs during the flooding procedure (see Section 13.4).

Notes:

Change "is also be used" to "might also be used."
--VERIFIER NOTES--
The text in section 13.4 that is referenced is a case where premature aging is used.


Errata ID: 3452

Status: Rejected
Type: Editorial

Reported By: David Jet
Date Reported: 2013-01-12
Rejected by: Stewart Bryant
Date Rejected: 2013-01-28

Section 11 says:

Multiple LSAs may
reference the destination, however a tie-breaking scheme always
reduces the choice to a single LSA.

It should say:

Multiple LSAs may
reference the same destination, however a tie-breaking scheme always
reduces the choice to a single LSA. 

Notes:

I think should add the "same" to describe it more clearly.
--VERIFIER NOTES--
Section 11 is written in terms of "the destination", and this is clearly a single destination, thus there should be no confusion with the original text.


Report New Errata