[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]
EXPERIMENTAL
Errata ExistIndependent Submission K-M. Moller
Request for Comments: 5984 1 April 2011
Category: Experimental
ISSN: 2070-1721
Increasing Throughput in IP Networks with ESP-Based Forwarding:
ESPBasedForwarding
Abstract
This document proposes an experimental way of reaching infinite
bandwidth in IP networks by the use of ESP-based forwarding.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This is a contribution to the RFC Series, independently
of any other RFC stream. The RFC Editor has chosen to publish this
document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc5984.
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Moller Experimental [Page 1]
RFC 5984 ESP-Based Forwarding 1 April 2011
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Requirements Language . . . . . . . . . . . . . . . . . . . 2
2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1. Experiments with Black Fiber . . . . . . . . . . . . . . . 3
2.2. Schrodinger's Cat Experiment . . . . . . . . . . . . . . . 3
3. ESP-Based Forwarding . . . . . . . . . . . . . . . . . . . . . 4
3.1. Principle of Operation . . . . . . . . . . . . . . . . . . 4
3.2. Architectural Components . . . . . . . . . . . . . . . . . 4
3.2.1. DPAUI . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.2. PPG . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.3. IID . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.4. CFE . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.5. PPS . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.6. ND . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4. End User Considerations . . . . . . . . . . . . . . . . . . . . 7
5. TCP Slow-Start Considerations . . . . . . . . . . . . . . . . . 7
6. Market Considerations . . . . . . . . . . . . . . . . . . . . . 7
7. Security Considerations . . . . . . . . . . . . . . . . . . . . 7
8. References . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.1. Normative References . . . . . . . . . . . . . . . . . . . 8
8.2. Informative References . . . . . . . . . . . . . . . . . . 8
1. Introduction
Mechanisms for efficient packet forwarding has evolved over the past
years. The demand for bandwidth is always increasing. Instead of
optimizing forwarding performance and link capacity in an incremental
fashion, we propose a brand new concept in packet forwarding that
will provide unsurpassed end user performance regardless of link
capacity, distance, and number of hops.
1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
2. Background
During the past years, there have been a lot of improvements made in
the domain of packet forwarding. Both software and hardware
optimizations combined with increased link capacities have cut down
round-trip times. Despite these improvements, many users find
themselves frustrated since their demand for bandwidth has increased
faster than the supply.
Moller Experimental [Page 2]
RFC 5984 ESP-Based Forwarding 1 April 2011
The current incremental approach to lower latency and increase
capacity will soon reach the end of the road. The reason for this
has been known for some time and is stated in RFC 1925 [RFC1925]
clause 2:
"(2) No matter how hard you push and no matter what the priority, you
can't increase the speed of light."
Our research has finally been able to circumvent this boundary by the
development of zero-latency network paths.
Inspired by RFC 1072 [RFC1072], where a network containing a long,
fat pipe is called LFN (pronounced "elephan(t)"), we will refer to an
internet path with zero-latency as "infinitely fat", and a network
containing this path as "IFN" (pronounced "infan(t)").
Before the invention of this new forwarding principle, several
experimental methods were tried. We have chosen to share our failed
attempts in order help others avoid the same mistakes that we
encountered. The following two methods have been dismissed:
o Black Fiber
o Schrodinger's cat experiment
2.1. Experiments with Black Fiber
Attempting to push the speed-of-light limitation by means of using
black fiber looked promising at first. Shortly after initiating the
experiment, lack of light was detected in the black fiber. This was
interpreted as proof of successful data transmission faster than the
speed of light. After popping the champagne, the following problems
were detected:
1. No data reached the receiver.
2. The fiber was not connected at the transmitting side.
This clearly spoiled the mood of the party.
2.2. Schrodinger's Cat Experiment
The Schrodinger's netcat experiment was based on an attempt to
implement the method described by E. Schrodinger [Schrodinger35].
The original procedure includes locking up cats in boxes with
radioactive materials and poisonous gas. Data communication
capabilities were added to the experiment, by using netcat. The
research team was dumbfounded by the notion that the cat experiment
seemed to work and not work at the same time. This was also
confirmed by a friend of Wigner's [Wigner].
Moller Experimental [Page 3]
RFC 5984 ESP-Based Forwarding 1 April 2011
A detailed analysis of the experiment indicated that the probability
vectors collapsed whenever traffic was sent to the box. The
conclusion was that this approach would only work without traffic,
thus eliminating all practical applications.
3. ESP-Based Forwarding
Experiments with ESP-based (Extra Sensory Perception) forwarding has
proved to successfully remove the limitation in RFC 1925 [RFC1925].
The foundation for the ESP-based forwarding scheme is to reduce
latency by means of precognitive datagram detection and generation.
By applying this technology, latency will not only reach zero, but
might even become negative.
Experiments performed by Benjamin Libet [Libet85] regarding the
readiness potential (Bereitschaftspotential) concludes that the end
user latency from impulse to the conscious mind is approximately 350
- 400 ms. In order to reach the highest possible data transport
without confusing the end user, it is important to take this latency
into consideration.
3.1. Principle of Operation
Traffic between the end user and the server reaches the ESP-enabled
router. Inside the ESP-based router, the data stream is first
analyzed by the DPAUI (Deep Packet And User Inspection). The DPAUI
sends a signal to the PPG (Deep Packet And User Inspection), which
generates uplink IP datagrams supported by the IID (Infinite
Improbability Drive). The generated IP datagram is sent to the CFE
(Clairvoyant Forwarding Engine) that forwards the datagram. Finally,
the "real" uplink, the end user datagram is received and forwarded to
the ND (Null Device).
3.2. Architectural Components
The current ESP-based forwarding architecture includes the following
components:
o DPAUI
o PPG
o IID
o CFE
o PPS
o ND
Moller Experimental [Page 4]
RFC 5984 ESP-Based Forwarding 1 April 2011
3.2.1. DPAUI
The DPAUI (Deep Packet And User Inspection) monitors the data streams
for all individual users. The DPAUI is implemented by means of
implementing a learning agent that analyzes each individual user.
The output from the DPAUI is a signal that indicates that an IP
datagram will be sent by the end user within a couple of seconds.
3.2.2. PPG
The purpose of the PPG (Precognitive Packet Generator) is to generate
the IP datagram that the end user will trigger to be sent. In order
to craft such a datagram, the PPG will perform a lookup based on the
offset and length parameters generated by the IID. The PPG will
generate the future packet by means of the function:
struct mbuf * CopyDatagramFromPi(
insane long offset,
unsigned int len);
The CopyDatagramFromPi() function will return a pointer to an mbuf
containing the IP datagram. The offset value and len matches a
corresponding offset and length in the decimal set for pi that
contains the bit pattern for the future datagram. This method of
operation will reduce the complex matter of precognitive packet
generation to a simple lookup.
Concerns have been raised that the full decimal set of pi requires an
infinite amount of memory. This might have a negative effect on the
manufacturing cost of the router. These concerns were successfully
managed by using a perfectly circular buffer. This reduced the
previous stated memory requirements at least by half.
3.2.3. IID
The purpose of the IID (Infinite Improbability Drive) is to assist
the PPG and PPS with improbable probabilities (and the other way
around). The IID was originally invented by Douglas Adams [Adams79].
The original implementation was based on hooking up the logic
circuits of a Bambleweeny 57 sub-meson Brain to an atomic vector
plotter suspended in a strong Brownian motion producer (i.e., a nice
hot cup of tea).
The research team struggled with the implementation of the strong
Brownian motion producer. As a matter of fact, the majority of the
research budget was wasted before it was fully conceived that a warm
cup of tea and router equipment rarely mix.
Moller Experimental [Page 5]
RFC 5984 ESP-Based Forwarding 1 April 2011
Aided by the gastronomical department (working on Bistromathic
Drive), the research team managed to attach a brownie on top of a
radio controlled hovercraft full of eels. This not only caused a lot
of noise and disarray, but also a sufficient amount of Brownian
motion. The research team is still working on an entirely software-
based solution. Hopefully, the eel-filled hovercraft will soon be
replaced with a different type of python script.
3.2.4. CFE
After the IP datagram has been produced by the PPG, the CFE
(Clairvoyant Forwarding Engine) will attempt to find the right route.
Since the route might not exist yet, direct access to a routing table
might result in routing errors.
The implementation of the CFE is very straightforward: any off-the-
shelf routing stack with a routing table and a routing daemon can be
used. A standard Ouija board is simply put on top of the routing
table. For each datagram, the CFE initiates an Ouija board session
that will establish a connection with the routing deamons. The CFE
will seek guidance for the future of the IP datagram and then send it
along for a low cost, to meet a tall, dark server rack.
3.2.5. PPS
The PPS (Pre-Preemptive Scheduler) is synchronized by means of an NTP
connection to the IID based NTP server. This ensures that the ESP
process will execute ten seconds ahead of local time (layman's term:
"into the future"). This value should ensure operation even with
very long Round Trip Times and should also include the readiness
potential of the end user.
The pre-preemptive scheduler not only provides a separate user space,
but a separate dimension for the code to execute in. The dimension
alignment is based on string theory and has been implemented in the
language C, simply by including the library string.h and then using
strcpy to copy the PPS function pointer into an eleven-dimensional
array.
3.2.6. ND
After a little time, less than the 'end user to server' Round-trip
time (RTT), the real end user datagram will reach the ingress side of
the ESP-based router, since the datagram has already been sent,
routed and returned. The datagram is directly routed to the ND (Null
Device) and the ingress packet counter is decremented.
Moller Experimental [Page 6]
RFC 5984 ESP-Based Forwarding 1 April 2011
Experimentation showed that the ND is a perfect source of entropy and
is able to store all digits of pi. The research team had great hopes
of reducing the memory footprint for the PPG even further, but ran
into problems with read access times.
The ND is readily available in most operating systems.
4. End User Considerations
End user considerations and differentiated traffic classes:
1. In order to facilitate a pleasant end user gaming experience,
packets destined for the spinal cord (i.e., force feedback
information, etc.) must be delayed by 350 ms in order to
synchronize with the traffic that is routed by the end user to
the cerebrum and cortex.
2. RFC 1216 [RFC1216], Section 3.3 states that "bad news travels
fast". This means that additional delay must be introduced when
the end user is browsing on news sites. Negative latency might
make the end user suspect that the news is even worse than
indicated by the news sites.
3. Machine-to-Machine (M2M) communication might experience reduced
performance due to difficulties for the DPAUI to work correctly.
When the concept starts working for M2M communication, this can
be used as an indication that a technological singularity might
be near.
5. TCP Slow-Start Considerations
The lack of RTT of IFNs might cause some problems with TCP slow-
start. More precisely, it will most likely not be slow at all. This
might be handled by implementing a congestion avoidance mechanism,
but will need further study.
6. Market Considerations
Unfortunately, we foresee that this product will never be ready for
the market. This is especially true for the Pre-preemptive
Scheduler, which by nature, will always be slightly ahead of its
time.
7. Security Considerations
o Introducing an end user RTT delay of zero might cause crashes in
badly implemented TCP/IP stacks. This is because division by zero
might occur when calculating bandwidth-delay product.
Moller Experimental [Page 7]
RFC 5984 ESP-Based Forwarding 1 April 2011
o ESP forwarding of traffic generated by psychics might lead to
problems with recursiveness.
o Lawful Intercept of the Deep User and Intention Inspection might
violate personal integrity.
o Terrorist organizations might exploit the "bad news travels fast"
loophole in RFC 1216 [RFC1216].
8. References
8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
8.2. Informative References
[Adams79] Adams, D., "Hitchhiker's guide to the galaxy.",
1979.
[Libet85] Libet, B., "Unconscious cerebral initiative and the
role of conscious will in voluntary action.", 1985.
[RFC1072] Jacobson, V. and R. Braden, "TCP extensions for
long-delay paths", RFC 1072, October 1988.
[RFC1216] Richard, P. and Kynikos, "Gigabit network economics
and paradigm shifts", RFC 1216, April 1991.
[RFC1925] Callon, R., "The Twelve Networking Truths",
RFC 1925, April 1996.
[RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas,
D., and L. Jones, "SOCKS Protocol Version 5",
RFC 1928, March 1996.
[Schrodinger35] Schrodinger, E., "The Present Situation In Quantum
Mechanics", 1935,
<http://www.tu-harburg.de/rzt/rzt/it/QM/cat.html>.
[Wigner] Wikipedia, "Wikipedia: Wigner's friend.",
<http://en.wikipedia.org/wiki/Wigner's_friend>.
Moller Experimental [Page 8]
RFC 5984 ESP-Based Forwarding 1 April 2011
Author's Address
Karl-Magnus Moller
Tankesaft
EMail: kalle@tankesaft.se
Moller Experimental [Page 9]