RFC: 793

TRANSM SSI ON CONTROL PROTOCOL

DARPA | NTERNET PROGRAM

PROTOCOL SPECI FI CATI ON

Sept ember 1981

prepared for

Def ense Advanced Research Projects Agency
I nformati on Processing Techni ques O fice
1400 W1 son Boul evard
Arlington, Virginia 22209

by

I nformati on Sciences Institute
Uni versity of Southern California
4676 Admiralty Way
Marina del Rey, California 90291

Sept ember 1981

Transni ssi on Control Protocol

TABLE OF CONTENTS

PREFACE i

1. I NTRODUCTT ON ..o e e e e e e e e e e 1
1.1 Motivati On ... 1
L. 2 SCOPE .ot 2
1.3 About This DOCUMBNL e e e 2
1.4 Interfaces ... 3
1.5 Operati On ... 3
2. PHI LOSOPHY .. e e 7
2.1 Elenents of the Internetwork System 7
2.2 Model of Operation e 7
2.3 The Host Environment i, 8
2.4 Interfaces 9
2.5 Relation to Gher Protocols i, 9
2.6 Reliable Comunication i, 9
2.7 Connection Establishnment and Cearing 10
2.8 Data Communi cati On 12
2.9 Precedence and SeCUrity e 13
2.10 Robustness Principle 13
3. FUNCTIONAL SPECIFI CATI ON . .ottt e e e e e e 15
3.1 Header FOrmat 15
3.2 Termnol OgY . ..o 19
3.3 Sequence NUMDEr S 24
3.4 Establishing a connection 30
3.5 dosing a Connection 37
3.6 Precedence and SecCUrity 40
3.7 Data Communi cati On 40
3.8 Interfaces e 44
3.9 Event ProCesSiNg i 52
GL OSSO ARY . it 79
REFERENCES 85

[Page i]

Sept ember 1981
Transni ssi on Control Protocol

[Page ii]

Sept ember 1981
Transni ssi on Control Protocol

PREFACE

Thi s docunent describes the DoD Standard Transni ssion Control Protocol
(TCP). There have been nine earlier editions of the ARPA TCP
specification on which this standard is based, and the present text
draws heavily fromthem There have been many contributors to this work
both in terns of concepts and in terns of text. This edition clarifies
several details and renobves the end-of-letter buffer-size adjustnents,
and redescribes the letter nmechanismas a push function.

Jon Poste

Edi t or

[Page iii]

RFC. 793

Repl aces: RFC 761

I ENs: 129, 124, 112, 81
55, 44, 40, 27, 21, 5

TRANSM SSI ON CONTRCL PROTOCOL

DARPA | NTERNET PROGRAM
PROTOCOL SPECI FI CATI ON

1. | NTRODUCTI ON

The Transmi ssion Control Protocol (TCP) is intended for use as a highly
reliable host-to-host protocol between hosts in packet-switched conputer
communi cati on networks, and in interconnected systens of such networks.

Thi s docunent describes the functions to be perforned by the
Transm ssion Control Protocol, the programthat inplenents it, and its
interface to prograns or users that require its services

1.1. Moti vati on

Conput er comuni cation systens are playing an increasingly inportant
role in mlitary, governnent, and civilian environnments. This
document focuses its attention primarily on mlitary conputer

communi cati on requirenments, especially robustness in the presence of
communi cation unreliability and availability in the presence of
congestion, but many of these problens are found in the civilian and
governnent sector as well.

As strategic and tactical conputer comruni cation networks are

devel oped and deployed, it is essential to provide neans of

i nterconnecting themand to provide standard interprocess

conmmuni cati on protocols which can support a broad range of
applications. 1In anticipation of the need for such standards, the
Deputy Undersecretary of Defense for Research and Engi neering has
decl ared the Transm ssion Control Protocol (TCP) described herein to
be a basis for DoD-wi de inter-process conmunication protoco

st andardi zati on.

TCP is a connection-oriented, end-to-end reliable protocol designed to
fit into a |ayered hierarchy of protocols which support mnulti-network
applications. The TCP provides for reliable inter-process

communi cati on between pairs of processes in host conputers attached to
di stinct but interconnected conputer comunication networks. Very few
assunptions are made as to the reliability of the comunication
protocols below the TCP layer. TCP assunes it can obtain a sinple,
potentially unreliable datagram service fromthe | ower |eve

protocols. In principle, the TCP should be able to operate above a

wi de spectrum of comuni cation systens rangi ng from hard-wred
connections to packet-sw tched or circuit-sw tched networks.

[Page 1]

Sept ember 1981
Transni ssi on Control Protocol
I ntroduction

TCP i s based on concepts first described by Cerf and Kahn in [1]. The
TCP fits into a |layered protocol architecture just above a basic
Internet Protocol [2] which provides a way for the TCP to send and
receive variable-length segnents of information enclosed in internet
dat agram "envel opes”. The internet datagram provides a nmeans for
addr essi ng source and destination TCPs in different networks. The
internet protocol also deals with any fragmentation or reassenbly of
the TCP segnents required to achieve transport and delivery through
mul ti pl e networks and interconnecting gateways. The internet protoco
also carries information on the precedence, security classification
and conpartnmentation of the TCP segnents, so this information can be
communi cat ed end-to-end across multiple networks.

Prot ocol Layering

Fom e e e ek +
| hi gher -1 evel |
o e e e e e e e ea oo +
| TCcP |
i +
| internet protocol

Fom e e e ek +
| communi cati on networ K|
o e e e e e e e ea oo +

Figure 1

Much of this docunent is witten in the context of TCP inplenentations
whi ch are co-resident with higher level protocols in the host

computer. Some conputer systens will be connected to networks via
front-end computers which house the TCP and internet protocol |ayers,
as well as network specific software. The TCP specification describes
an interface to the higher |evel protocols which appears to be

i mpl ement abl e even for the front-end case, as long as a suitable
host-to-front end protocol is inplenented.

1.2. Scope
The TCP is intended to provide a reliable process-to-process
communi cati on service in a nultinetwork environment. The TCP is
i ntended to be a host-to-host protocol in conmon use in multiple
net wor ks.
1.3. About this Docunent
Thi s docunent represents a specification of the behavior required of

any TCP inplenmentation, both in its interactions with higher |eve
protocols and in its interactions with other TCPs. The rest of this

[Page 2]

Sept ember 1981
Transni ssi on Control Protocol
I ntroduction

section offers a very brief view of the protocol interfaces and
operation. Section 2 sumuarizes the phil osophical basis for the TCP
design. Section 3 offers both a detailed description of the actions
required of TCP when various events occur (arrival of new segnents,
user calls, errors, etc.) and the details of the formats of TCP
segnent s.

1.4. Interfaces

The TCP interfaces on one side to user or application processes and on
the other side to a | ower level protocol such as Internet Protocol

The interface between an application process and the TCP is
illustrated in reasonable detail. This interface consists of a set of
calls nuch like the calls an operating system provides to an
application process for manipulating files. For exanple, there are
calls to open and cl ose connections and to send and receive data on
est abli shed connections. It is also expected that the TCP can
asynchronously conmuni cate with application programs. Although
considerable freedomis pernmtted to TCP inplenentors to design
interfaces which are appropriate to a particular operating system
environnent, a mninumfunctionality is required at the TCP/ user
interface for any valid inplenmentation

The interface between TCP and | ower |evel protocol is essentially
unspecified except that it is assuned there is a nechani sm whereby the
two | evel s can asynchronously pass infornation to each other
Typically, one expects the lower |evel protocol to specify this
interface. TCP is designed to work in a very general environnment of

i nterconnected networks. The |ower |evel protocol which is assuned

t hroughout this docunment is the Internet Protocol [2].

1.5. CQperation

As noted above, the primary purpose of the TCP is to provide reliable,
securabl e logical circuit or connection service between pairs of
processes. To provide this service on top of a less reliable internet
conmuni cati on systemrequires facilities in the follow ng areas:

Basi ¢ Data Transfer
Reliability

Fl ow Control

Mul ti pl exi ng

Connecti ons

Precedence and Security

The basic operation of the TCP in each of these areas is described in
the foll ow ng paragraphs.

[Page 3]

Sept ember 1981
Transni ssi on Control Protocol
I ntroduction

Basi ¢ Data Transfer:

The TCP is able to transfer a continuous stream of octets in each
direction between its users by packagi ng sone nunber of octets into
segnents for transm ssion through the internet system |n general
the TCPs decide when to block and forward data at their own

conveni ence.

Sonetinmes users need to be sure that all the data they have
submitted to the TCP has been transnmitted. For this purpose a push
function is defined. To assure that data subnmitted to a TCP is
actually transmtted the sending user indicates that it should be
pushed through to the receiving user. A push causes the TCPs to
pronptly forward and deliver data up to that point to the receiver
The exact push point might not be visible to the receiving user and
the push function does not supply a record boundary marker.

Reliability:

The TCP nust recover fromdata that is danaged, |ost, duplicated, or
delivered out of order by the internet communication system This

i s achieved by assigning a sequence nunber to each octet
transmtted, and requiring a positive acknow edgnent (ACK) fromthe
receiving TCP. |If the ACKis not received within a tineout
interval, the data is retransmtted. At the receiver, the sequence
nunbers are used to correctly order segnents that may be received
out of order and to elimnate duplicates. Damage is handl ed by
addi ng a checksumto each segnent transnitted, checking it at the
recei ver, and discardi ng damaged segnents.

As long as the TCPs continue to function properly and the internet
system does not becone conpletely partitioned, no transm ssion
errors will affect the correct delivery of data. TCP recovers from
i nternet communication systemerrors

F

ow Control

TCP provides a neans for the receiver to govern the anobunt of data
sent by the sender. This is achieved by returning a "wi ndow' with
every ACK indicating a range of acceptable sequence nunbers beyond
the | ast segnment successfully received. The wi ndow indicates an
al | oned number of octets that the sender may transnit before

recei ving further perm ssion

[Page 4]

Sept ember 1981
Transni ssi on Control Protocol
I ntroduction

Mul ti pl exi ng:

To allow for many processes within a single Host to use TCP

communi cation facilities sinultaneously, the TCP provides a set of
addresses or ports within each host. Concatenated with the network
and host addresses fromthe internet comunication layer, this forns
a socket. A pair of sockets uniquely identifies each connection.
That is, a socket may be sinultaneously used in nultiple

connecti ons.

The binding of ports to processes is handled independently by each
Host. However, it proves useful to attach frequently used processes
(e.g., a "logger"” or tinesharing service) to fixed sockets which are
made known to the public. These services can then be accessed

t hrough the known addresses. Establishing and |earning the port
addresses of other processes may involve nore dynani ¢ nechani sns.

Connecti ons:

The reliability and flow control nechani sns descri bed above require
that TCPs initialize and maintain certain status information for
each data stream The conbination of this information, including
sockets, sequence nunbers, and w ndow sizes, is called a connection.
Each connection is uniquely specified by a pair of sockets
identifying its two sides.

When two processes wi sh to communicate, their TCP's nust first
establish a connection (initialize the status infornmation on each
side). Wen their comunication is conplete, the connection is
termnated or closed to free the resources for other uses.

Si nce connections nust be established between unreliable hosts and
over the unreliable internet comunication system a handshake
mechani sm wi th cl ock-based sequence nunbers is used to avoid
erroneous initialization of connections.

Precedence and Security:
The users of TCP may indicate the security and precedence of their

conmuni cation. Provision is nade for default values to be used when
t hese features are not needed.

[Page 5]

Sept ember 1981
Transni ssi on Control Protocol

[Page 6]

Sept ember 1981

2.

Transni ssi on Control Protocol

2. PHI LOSOPHY
1. Elenents of the Internetwork System

The internetwork environment consists of hosts connected to networks
which are in turn interconnected via gateways. It is assumed here
that the networks may be either |ocal networks (e.g., the ETHERNET) or
| arge networks (e.g., the ARPANET), but in any case are based on
packet sw tching technology. The active agents that produce and
consunme nessages are processes. Various levels of protocols in the
net wor ks, the gateways, and the hosts support an interprocess

communi cati on systemthat provides two-way data fl ow on | ogica
connecti ons between process ports.

The term packet is used generically here to nean the data of one
transacti on between a host and its network. The format of data bl ocks
exchanged within the a network will generally not be of concern to us.

Hosts are conputers attached to a network, and fromthe conmuni cation
network’s point of view, are the sources and destinations of packets.
Processes are viewed as the active elenents in host conputers (in
accordance with the fairly common definition of a process as a program
in execution). Even ternminals and files or other |1/O devices are

vi ewed as communicating with each other through the use of processes.
Thus, all communication is viewed as inter-process conmuni cation

Since a process may need to distingui sh anong several conmunication
streans between itself and anot her process (or processes), we inagine
t hat each process may have a nunber of ports through which it

communi cates with the ports of other processes.

.2. Mddel of QOperation

Processes transmit data by calling on the TCP and passi ng buffers of
data as argunents. The TCP packages the data fromthese buffers into
segrments and calls on the internet nodule to transmt each segnment to
the destination TCP. The receiving TCP places the data froma segnent
into the receiving user’s buffer and notifies the receiving user. The
TCPs include control information in the segnents which they use to
ensure reliable ordered data transm ssion

The nmodel of internet comunication is that there is an internet

prot ocol modul e associated with each TCP which provides an interface
to the local network. This internet nodul e packages TCP segnents

i nside internet datagrans and routes these datagrans to a destination
internet nmodule or internediate gateway. To transnit the datagram
through the |l ocal network, it is enbedded in a |ocal network packet.

The packet switches may perform further packagi ng, fragnentation, or

[Page 7]

Sept ember 1981
Transni ssi on Control Protocol
Phi | osophy

ot her operations to achieve the delivery of the |ocal packet to the
destination internet nodule.

At a gateway between networks, the internet datagramis "unw apped"
fromits |ocal packet and exanined to determ ne through which network
the internet datagram should travel next. The internet datagramis
then "wrapped” in a |ocal packet suitable to the next network and
routed to the next gateway, or to the final destination

A gateway is permtted to break up an internet datagraminto snaller
internet datagramfragments if this is necessary for transm ssion

t hrough the next network. To do this, the gateway produces a set of

i nternet datagramnms; each carrying a fragnent. Fragnents may be
further broken into smaller fragnents at subsequent gateways. The

i nternet datagram fragment format is designed so that the destination
i nternet nodul e can reassenble fragnents into internet datagrans.

A destination internet nodul e unw aps the segnent fromthe datagram
(after reassenbling the datagram if necessary) and passes it to the
destination TCP

This sinple nodel of the operation glosses over nany details. One

i mportant feature is the type of service. This provides infornmation
to the gateway (or internet nodule) to guide it in selecting the
service paraneters to be used in traversing the next network.
Included in the type of service information is the precedence of the
datagram Datagrans nmay also carry security information to permit
host and gateways that operate in multilevel secure environnents to
properly segregate datagranms for security considerations.

2.3. The Host Environnent

The TCP is assuned to be a nodule in an operating system The users
access the TCP much like they would access the file system The TCP
may call on other operating systemfunctions, for exanple, to nanage
data structures. The actual interface to the network is assuned to be
controlled by a device driver nodule. The TCP does not call on the
network device driver directly, but rather calls on the internet

dat agram protocol nodule which may in turn call on the device driver

The mechani snms of TCP do not preclude inplenmentation of the TCP in a
front-end processor. However, in such an inplenmentation, a
host-to-front-end protocol nust provide the functionality to support
the type of TCP-user interface described in this docunent.

[Page 8]

Sept ember 1981

2.

Transni ssi on Control Protocol
Phi | osophy

4. I nterfaces

The TCP/user interface provides for calls made by the user on the TCP
to OPEN or CLOSE a connection, to SEND or RECEI VE data, or to obtain
STATUS about a connection. These calls are like other calls from user
prograns on the operating system for exanple, the calls to open, read
from and close a file.

The TCP/internet interface provides calls to send and receive

dat agrans addressed to TCP nodul es in hosts anywhere in the internet
system These calls have paraneters for passing the address, type of
service, precedence, security, and other control information

.5. Relation to G her Protocols

The following diagramillustrates the place of the TCP in the protoco
hi erar chy:

Hom - - + ----- + ----- + L +
| Telnet| | FTP | |Voice|l ... | | Application Leve
Hom oo + H----- + H----- + +-- o - +
| | |
F--- - + F--- - + F--- - +
| TCP | | RTP | ... | | Host Leve
L + L + L +
| | |
e +
| Internet Protocol & ICMP | Gateway Leve
Fom e m e e e e e e e e e e e +
|
o +
| Local Network Protocol | Net work Leve
o m e e e e e e +

Prot ocol Rel ationships
Fi gure 2.
It is expected that the TCP will be able to support higher |eve

protocols efficiently. It should be easy to interface higher |eve
protocols |Iike the ARPANET Tel net or AUTOCDIN Il THP to the TCP

.6. Reliable Communication

A stream of data sent on a TCP connection is delivered reliably and in
order at the destination

[Page 9]

Sept ember 1981
Transni ssi on Control Protocol
Phi | osophy

Transmission is nmade reliable via the use of sequence nunbers and
acknow edgnments. Conceptually, each octet of data is assigned a
sequence nunber. The sequence nunber of the first octet of data in a
segrment is transmitted with that segnent and is called the segnent
sequence nunmber. Segnents al so carry an acknow edgnent nunber which
is the sequence nunber of the next expected data octet of

transmi ssions in the reverse direction. Wen the TCP transmts a
segment containing data, it puts a copy on a retransni ssion queue and
starts a tinmer; when the acknowl edgnent for that data is received, the
segrment is deleted fromthe queue. |If the acknow edgnent is not
received before the timer runs out, the segnment is retransmtted.

An acknow edgrment by TCP does not guarantee that the data has been
delivered to the end user, but only that the receiving TCP has taken
the responsibility to do so.

To govern the flow of data between TCPs, a flow control mechanismis
enpl oyed. The receiving TCP reports a "w ndow' to the sending TCP
Thi s wi ndow specifies the nunber of octets, starting with the

acknow edgnent nunber, that the receiving TCP is currently prepared to
receive.

2.7. Connection Establishnment and d earing

To identify the separate data streans that a TCP nmay handl e, the TCP
provides a port identifier. Since port identifiers are selected

i ndependently by each TCP they night not be unique. To provide for
uni que addresses within each TCP, we concatenate an internet address
identifying the TCP with a port identifier to create a socket which
wi || be unique throughout all networks connected together.

A connection is fully specified by the pair of sockets at the ends. A
| ocal socket nmmy participate in many connections to different foreign
sockets. A connection can be used to carry data in both directions,
that is, it is "full duplex".

TCPs are free to associate ports with processes however they choose.
However, several basic concepts are necessary in any inplenentation
There nust be well-known sockets which the TCP associates only with
the "appropriate" processes by sone nmeans. W envision that processes
may "own" ports, and that processes can initiate connections only on
the ports they own. (Means for inplenenting ownership is a |loca

i ssue, but we envision a Request Port user command, or a nethod of

uni quely allocating a group of ports to a given process, e.g., by
associating the high order bits of a port nanme with a given process.)

A connection is specified in the OPEN call by the local port and
forei gn socket argunents. In return, the TCP supplies a (short) |oca

[Page 10]

Sept ember 1981
Transni ssi on Control Protocol
Phi | osophy

connection nanme by which the user refers to the connection in
subsequent calls. There are several things that nust be renenbered
about a connection. To store this information we inagine that there
is a data structure called a Transmi ssion Control Block (TCB). One

i mpl enentation strategy woul d have the | ocal connection nane be a
pointer to the TCB for this connection. The OPEN call also specifies
whet her the connection establishnment is to be actively pursued, or to
be passively waited for

A passive OPEN request neans that the process wants to accept inconing
connection requests rather than attenpting to initiate a connection
Oten the process requesting a passive OPEN will accept a connection
request fromany caller. 1In this case a foreign socket of all zeros
is used to denote an unspecified socket. Unspecified foreign sockets
are allowed only on passive OPENs.

A service process that wi shed to provide services for unknown ot her
processes woul d i ssue a passive OPEN request with an unspecified
foreign socket. Then a connection could be made with any process that
requested a connection to this local socket. It would help if this

| ocal socket were known to be associated with this service.

Vel | - known sockets are a conveni ent mechanismfor a priori associating
a socket address with a standard service. For instance, the

"Tel net-Server" process is permanently assigned to a particul ar
socket, and other sockets are reserved for File Transfer, Renote Job
Entry, Text Cenerator, Echoer, and Sink processes (the |ast three
being for test purposes). A socket address night be reserved for
access to a "Look-Up" service which would return the specific socket
at which a newWy created service would be provided. The concept of a
wel | - known socket is part of the TCP specification, but the assignnment
of sockets to services is outside this specification. (See [4].)

Processes can issue passive OPENs and wait for matching active OPENs
from ot her processes and be inforned by the TCP when connecti ons have
been established. Two processes which issue active OPENs to each
other at the same tinme will be correctly connected. This flexibility
is critical for the support of distributed conputing in which
conmponents act asynchronously with respect to each other

There are two principal cases for matching the sockets in the |oca
passi ve OPENs and an foreign active OPENs. In the first case, the

| ocal passive OPENs has fully specified the foreign socket. 1In this
case, the match nust be exact. |In the second case, the l|ocal passive
OPENs has |l eft the foreign socket unspecified. |In this case, any

foreign socket is acceptable as long as the local sockets natch.
O her possibilities include partially restricted matches.

[Page 11]

Sept ember 1981
Transni ssi on Control Protocol
Phi | osophy

If there are several pending passive OPENs (recorded in TCBs) with the
sanme | ocal socket, an foreign active OPEN will be matched to a TCB

with the specific foreign socket in the foreign active OPEN, if such a
TCB exists, before selecting a TCB with an unspecified foreign socket.

The procedures to establish connections utilize the synchronize (SYN)
control flag and involves an exchange of three nessages. This
exchange has been terned a three-way hand shake [3].

A connection is initiated by the rendezvous of an arriving segnent
containing a SYN and a waiting TCB entry each created by a user OPEN
command. The matching of |ocal and foreign sockets determ nes when a
connection has been initiated. The connection becones "established"
when sequence nunbers have been synchroni zed in both directions.

The clearing of a connection also involves the exchange of segnents,
in this case carrying the FIN control fl ag.

2. 8. Dat a Conmuni cati on

The data that flows on a connection may be thought of as a stream of
octets. The sending user indicates in each SEND call whether the data
in that call (and any preceeding calls) should be i medi ately pushed
through to the receiving user by the setting of the PUSH fl ag.

A sending TCP is allowed to collect data fromthe sending user and to
send that data in segnents at its own conveni ence, until the push
function is signaled, then it nmust send all unsent data. Wen a
receiving TCP sees the PUSH flag, it nust not wait for nore data from
the sending TCP before passing the data to the receiving process.

There is no necessary rel ationshi p between push functions and segnent
boundaries. The data in any particular segment nay be the result of a
single SEND call, in whole or part, or of nultiple SEND calls.

The purpose of push function and the PUSH flag is to push data through
fromthe sending user to the receiving user. It does not provide a
record service

There is a coupling between the push function and the use of buffers
of data that cross the TCP/user interface. Each time a PUSH flag is
associated with data placed into the receiving user’s buffer, the
buffer is returned to the user for processing even if the buffer is
not filled. |If data arrives that fills the user’'s buffer before a
PUSH i s seen, the data is passed to the user in buffer size units.

TCP al so provides a neans to comuni cate to the receiver of data that
at some point further along in the data streamthan the receiver is

[Page 12]

Sept ember 1981
Transni ssi on Control Protocol
Phi | osophy

currently reading there is urgent data. TCP does not attenpt to
define what the user specifically does upon being notified of pending
urgent data, but the general notion is that the receiving process wll
take action to process the urgent data quickly.

2.9. Precedence and Security

The TCP nakes use of the internet protocol type of service field and
security option to provide precedence and security on a per connection
basis to TCP users. Not all TCP nodules will necessarily function in
a multilevel secure environnent; sone nmay be linmted to unclassified
use only, and others may operate at only one security |evel and
compartment. Consequently, sone TCP inplenentations and services to
users may be limted to a subset of the nmultilevel secure case

TCP nmodul es which operate in a multilevel secure environnent nust
properly mark outgoing segnments with the security, conpartment, and
precedence. Such TCP nodul es nmust also provide to their users or

hi gher | evel protocols such as Telnet or THP an interface to all ow
themto specify the desired security |level, conpartnent, and
precedence of connecti ons.

2.10. Robustness Principle
TCP inplementations will follow a general principle of robustness: be

conservative in what you do, be liberal in what you accept from
ot hers.

[Page 13]

Sept ember 1981
Transni ssi on Control Protocol

[Page 14]

Sept ember 1981
Transni ssi on Control Protocol

3. FUNCTI ONAL SPECI FI CATI ON
3.1. Header For nat

TCP segnents are sent as internet datagrans. The Internet Protoco
header carries several information fields, including the source and
destination host addresses [2]. A TCP header follows the internet
header, supplying information specific to the TCP protocol. This
division allows for the existence of host |evel protocols other than
TCP.

TCP Header For mat

0 1 2 3
01234567890123456789012345678901
B Lt r s i i i o o T s ks S R S
| Source Port | Desti nation Port |
B s T s s e T o e S T ks et s oot ST S S S o S S 3

| Sequence Numnber
B T S S e s e i s S i S S S S S S T S SR S S S i S S S
Acknowl edgnent Nunber |
B i T e S i i i i T S S e e S i o i I T N S
| | U Al PR S| F| |
t| Reserved |RC SIS VY| I]| W ndow |
|+ |

| G K HTINN

+

T T e S S i S S S i wuity SN S

|

+-

|

|

|

+-

| Checksum | Ur gent Pointer |
B Lt r s i i i o o T s ks S R S
| Opti ons | Paddi ng

+-

|

+-

B T T o S T o il s S S S S S i S il i
dat a |
B s o s o S S e e S i TRIE TR TR S S S e e o o e i =
TCP Header For nat
Note that one tick mark represents one bit position.
Fi gure 3.
Source Port: 16 bits
The source port numnber.

Destination Port: 16 bits

The destination port nunber.

[Page 15]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

Sequence Number: 32 bits

The sequence nunber of the first data octet in this segnent (except
when SYN is present). If SYNis present the sequence nunber is the
initial sequence nunmber (ISN) and the first data octet is |SN+1

Acknowl edgnment Nunmber: 32 bits

If the ACK control bit is set this field contains the value of the
next sequence nunber the sender of the segnment is expecting to
receive. Once a connection is established this is always sent.

Data Offset: 4 bits

The nunber of 32 bit words in the TCP Header. This indicates where
the data begins. The TCP header (even one including options) is an
i ntegral nunber of 32 bits |ong.

Reserved: 6 bits
Reserved for future use. Mist be zero.
Control Bits: 6 bits (fromleft to right):

URG Urgent Pointer field significant
ACK: Acknowl edgnent field significant
PSH: Push Function

RST: Reset the connection

SYN: Synchroni ze sequence nunbers
FIN. No nore data from sender

W ndow. 16 bits

The nunber of data octets beginning with the one indicated in the
acknow edgnment field which the sender of this segnent is willing to
accept.

Checksum 16 bits

The checksumfield is the 16 bit one's conpl enent of the one’s
conpl enent sumof all 16 bit words in the header and text. If a
segnment contains an odd nunber of header and text octets to be
checksummed, the last octet is padded on the right with zeros to
forma 16 bit word for checksum purposes. The pad is not
transmitted as part of the segnment. \While conputing the checksum
the checksumfield itself is replaced with zeros.

The checksum al so covers a 96 bit pseudo header conceptually

[Page 16]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

prefixed to the TCP header. This pseudo header contains the Source
Address, the Destination Address, the Protocol, and TCP | ength.
This gives the TCP protection agai nst m srouted segments. This
information is carried in the Internet Protocol and is transferred
across the TCP/ Network interface in the arguments or results of
calls by the TCP on the IP

Fom e oo - Fom e oo - Fom e oo - Fom e oo - +
| Sour ce Address |
E R E R E R E R +
| Desti nati on Address |
Fomm e o - Fomm e o - Fomm e o - Fomm e o - +
| zero | PTCL | TCP Length

Fom e oo - Fom e oo - Fom e oo - Fom e oo - +

The TCP Length is the TCP header length plus the data length in
octets (this is not an explicitly transnmitted quantity, but is
conmputed), and it does not count the 12 octets of the pseudo
header .

Urgent Pointer: 16 bits

This field communi cates the current value of the urgent pointer as a
positive offset fromthe sequence nunber in this segnent. The
urgent pointer points to the sequence nunber of the octet follow ng
the urgent data. This field is only be interpreted in segnents with
the URG control bit set.

Options: variable
Options may occupy space at the end of the TCP header and are a
multiple of 8 bits inlength. Al options are included in the
checksum An option nmay begin on any octet boundary. There are two
cases for the format of an option:
Case 1: A single octet of option-kind.

Case 2: An octet of option-kind, an octet of option-length, and
the actual option-data octets.

The option-length counts the two octets of option-kind and
option-length as well as the option-data octets.

Note that the list of options nay be shorter than the data of fset
field might inply. The content of the header beyond the
End- of - Opti on option nust be header padding (i.e., zero).

A TCP nust inplenent all options.

[Page 17]

Sept ember 1981
Transni ssi on Control Protocol

Functi onal Specification

Currently defined options include (kind indicated in octal):

Ki nd Length Meani ng
0 - End of option list.
1 - No- Oper at i on.
2 4 Maxi mum Segnent Si ze.

Specific Option Definitions

End of Option List

This option code indicates the end of the option list. This

m ght not coincide with the end of the TCP header according to
the Data Ofset field. This is used at the end of all options,
not the end of each option, and need only be used if the end of
the options woul d not otherw se coincide with the end of the TCP
header .

No- Oper ati on

This option code may be used between options, for exanple, to
align the beginning of a subsequent option on a word boundary.
There is no guarantee that senders will use this option, so
recei vers nust be prepared to process options even if they do
not begin on a word boundary.

Maxi mum Segnent Si ze

oo oo I oo +
| 00000010 00000100| max seg size
Fom e e e - Fom e e e - Fomm e e o Fom e e e - +

Ki nd=2 Lengt h=4

[Page 18]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

Maxi mum Segnent Size Option Data: 16 bits

If this option is present, then it conmuni cates the nmaxi num
receive segnent size at the TCP which sends this segnent.

This field nmust only be sent in the initial connection request
(i.e., in segments with the SYN control bit set). |If this
option is not used, any segnent size is allowed.

Paddi ng: variabl e

The TCP header padding is used to ensure that the TCP header ends
and data begins on a 32 bit boundary. The padding is conposed of
zeros.

3.2. Term nol ogy

Bef ore we can di scuss very much about the operation of the TCP we need
to introduce sone detailed term nology. The nmaintenance of a TCP
connection requires the renenbering of several variables. W conceive
of these variables being stored in a connection record called a
Transm ssion Control Block or TCB. Anobng the variables stored in the
TCB are the |l ocal and renote socket nunbers, the security and
precedence of the connection, pointers to the user’'s send and receive
buffers, pointers to the retransnmt queue and to the current segnent.
In addition several variables relating to the send and receive
sequence nunbers are stored in the TCB

Send Sequence Vari abl es

SND. UNA - send unacknow edged

SND. NXT - send next

SND. WAD - send wi ndow

SND. UP - send urgent pointer

SND. W.1 - segnent sequence nunber used for |ast wi ndow update

SND. W.2 - segnent acknow edgment nunber used for |ast w ndow
updat e

I SS - initial send sequence nunber

Recei ve Sequence Vari abl es

RCV. NXT - recei ve next

RCV. WND - receive w ndow
RCV. UP - receive urgent pointer
I RS - initial receive sequence nunber

[Page 19]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

The follow ng diagranms nmay help to relate sone of these variables to
t he sequence space.

Send Sequence Space

SND. UNA SND. NXT SND. UNA
+SND. WND

- ol d sequence nunmbers whi ch have been acknow edged
- sequence nunbers of unacknow edged data

sequence nunmbers allowed for new data transm ssion
- future sequence nunbers which are not yet allowed

A WN P
1

Send Sequence Space

Fi gure 4.

The send window is the portion of the sequence space labeled 3 in
figure 4.

Recei ve Sequence Space

1 - old sequence nunbers which have been acknow edged

2 - sequence nunbers all owed for new reception

3 - future sequence nunbers which are not yet all owed
Recei ve Sequence Space

Fi gure 5.

The receive window is the portion of the sequence space labeled 2 in
figure 5.

There are al so sonme variabl es used frequently in the discussion that
take their values fromthe fields of the current segnent.

[Page 20]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

Current Segnent Vari abl es

SEG SEQ - segnent sequence nunber

SEG ACK - segnment acknow edgnment number
SEG LEN - segnent |ength

SEG WAD - segnent w ndow

SEG UP - segnent urgent pointer

SEG PRC - segnent precedence val ue

A connection progresses through a series of states during its
lifetine. The states are: LISTEN, SYN SENT, SYN RECEI VED,

ESTABLI SHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING LAST-ACK
TIME-VWAIT, and the fictional state CLOSED. CLOSED is fictiona
because it represents the state when there is no TCB, and therefore,
no connection. Briefly the neanings of the states are:

LI STEN - represents waiting for a connection request fromany renote
TCP and port.

SYN-SENT - represents waiting for a matching connection request
after having sent a connection request.

SYN- RECEI VED - represents waiting for a confirm ng connection
request acknow edgnent after having both received and sent a
connection request.

ESTABLI SHED - represents an open connection, data received can be
delivered to the user. The normal state for the data transfer phase
of the connection

FINNVWAIT-1 - represents waiting for a connection term nation request
fromthe renote TCP, or an acknow edgnent of the connection
term nation request previously sent.

FINWAIT-2 - represents waiting for a connection termination request
fromthe renote TCP.

CLCSE-WAIT - represents waiting for a connection ternination request
fromthe | ocal user.

CLOSI NG - represents waiting for a connection termnation request
acknow edgnment fromthe renmote TCP

LAST- ACK - represents waiting for an acknow edgnent of the
connection termnation request previously sent to the renote TCP
(whi ch includes an acknow edgnment of its connection termination
request).

[Page 21]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

TIME-VWAIT - represents waiting for enough tinme to pass to be sure
the renote TCP received the acknow edgnent of its connection
term nation request.

CLCSED - represents no connection state at all

A TCP connection progresses fromone state to another in response to
events. The events are the user calls, OPEN, SEND, RECEl VE, CLCSE,
ABORT, and STATUS; the inconing segnents, particularly those

contai ning the SYN, ACK, RST and FIN flags; and tineouts.

The state diagramin figure 6 illustrates only state changes, together
with the causing events and resulting actions, but addresses neither
error conditions nor actions which are not connected with state
changes. In a later section, nore detail is offered with respect to
the reaction of the TCP to events.

NOTE BENE: this diagramis only a sunmary and nust not be taken as
the total specification

[Page 22]

Sept ember 1981

Transni ssi on Control Protocol

Functi onal Specification
————————— +o--------- active OPEN
CLOSED | L
————————— SR CEEE TR \ create TCB
| A \ \" snd SYN
passi ve OPEN | | CLCSE \ \
---------------------- \ \
create TCB | | delete TCB \ \
\Y | \ \
--------- + CLCSE | \
LISTEN | —-emmeo--- |
--------- + delete TCB | |
rcv SYN | | SEND | |
----------- | v
Fomem- - + snd SYN, ACK / \ snd SYN Fomem- - +
| R hRREEEEEEEE > |
SYN	rcv SYN	SYN
R 0D I I e	SENT	
	snd ACK	
R RREEEEEE		
Fomem- - + rcv ACK of SYN \ /[rcv SYN, ACK Fomem- - +		

| X | | snd ACK

| Y Y

| CLCSE 0 Aeeeeeeo- +

| ------- ESTAB |

| snd FIN Ao +

| CLCSE | | rcv FIN

Voo | |-

R + snd FIN / \ snd ACK R +
| FIN G e R > CLCSE |

WAIT-1 | --------mmmmma - - - | VAT |
Fomem- - + rcv FIN \ Fomem- - +

| rev ACK of FIN = ------- | CLCSE |

| -------m - snd ACK | eeeeae-

\% X \% snd FIN V
Fomm e e o + e e e e e + Fomm e e o +
| FI NWAI T- 2| CLOSI NG | | LAST- ACK|
N + Heeeeeanas + N +

| rcv ACK of FIN | rcv ACK of FIN |

| rev FIN eeemeeae - | Ti meout =2MSL -------------- |

------- X Vv X Vv
\ snd ACK o H--------- +del ete TCB L +
------------------------ > TIME WAIT|------------------> CLOSED |
--------- + S

TCP Connection State Di agram

Fi gure 6.

[Page 23]

Sept ember 1981

Transni ssi on Control Protocol
Functi onal Specification

3.

3. Sequence Numbers

A fundanental notion in the design is that every octet of data sent
over a TCP connection has a sequence nunber. Since every octet is
sequenced, each of them can be acknow edged. The acknow edgnent
mechani sm enpl oyed is cunul ati ve so that an acknow edgnent of sequence
nunber X indicates that all octets up to but not including X have been
received. This nechanismallows for straight-forward duplicate
detection in the presence of retransm ssion. Nunbering of octets
within a segment is that the first data octet imediately follow ng
the header is the | owest nunbered, and the followi ng octets are
nunbered consecutively.

It is essential to renenber that the actual sequence nunber space is
finite, though very large. This space ranges fromO0 to 2**32 - 1
Since the space is finite, all arithnmetic dealing with sequence
nunmbers nust be performed nmodul o 2**32. This unsigned arithmetic
preserves the relationship of sequence nunbers as they cycle from
2**32 - 1 to 0 again. There are sone subtleties to conputer nodul o
arithnmetic, so great care should be taken in progranm ng the

conpari son of such values. The synbol "=<" neans "less than or equal"
(rmodul o 2**32).

The typical kinds of sequence nunber conparisons which the TCP nust
perform i ncl ude:

(a) Deternining that an acknow edgnment refers to sone sequence
nunber sent but not yet acknow edged.

(b) Deternmining that all sequence numbers occupi ed by a segnent
have been acknow edged (e.g., to renove the segnment froma
retransm ssi on queue).

(c) Deternining that an incom ng segnment contains sequence nunbers
which are expected (i.e., that the segnment "overl aps" the
recei ve wi ndow).

[Page 24]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

In response to sending data the TCP will receive acknow edgnents. The
foll owi ng conpari sons are needed to process the acknow edgnents.

SND. UNA = ol dest unacknow edged sequence nunber

SND. NXT = next sequence nunber to be sent

SEG ACK = acknow edgnent fromthe receiving TCP (next sequence
nunber expected by the receiving TCP)

SEG SEQ = first sequence nunber of a segnent

SEG LEN = the nunber of octets occupied by the data in the segnent

(counting SYN and FIN)
SEG SEQ+SEG LEN-1 = | ast sequence nunber of a segnent

A new acknow edgnent (called an "acceptable ack"), is one for which
the inequality bel ow hol ds:

SND. UNA < SEG ACK =< SND. NXT
A segrment on the retransm ssion queue is fully acknow edged if the sum
of its sequence number and length is less or equal than the
acknow edgnment value in the incom ng segnent.

When data is received the followi ng conpari sons are needed:

RCV. NXT = next sequence nunber expected on an inconing segnents, and
is the left or |ower edge of the receive w ndow

RCV. NXT+RCV. WND- 1 = | ast sequence nunber expected on an inconing
segrment, and is the right or upper edge of the receive w ndow

SEG SEQ = first sequence nunber occupied by the inconi ng segnent

SEG SEQ+SEG LEN-1 = | ast sequence nunber occupied by the incom ng
segment

A segnment is judged to occupy a portion of valid receive sequence
space if

RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND
or

RCV. NXT =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WND

[Page 25]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

The first part of this test checks to see if the begi nning of the
segrment falls in the window, the second part of the test checks to see
if the end of the segnment falls in the window, if the segnent passes
either part of the test it contains data in the w ndow.

Actually, it is alittle nore conplicated than this. Due to zero
wi ndows and zero |length segments, we have four cases for the
acceptability of an incom ng segnent:

Segnment Receive Test
Length W ndow

0 0 SEG. SEQ = RCV. NXT

0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND
>0 0 not acceptabl e

>0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WAD

or RCV. NXT =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WD

Note that when the receive windowis zero no segnents should be
accept abl e except ACK segnents. Thus, it is be possible for a TCP to
mai ntain a zero receive window while transmtting data and receiving
ACKs. However, even when the receive windowis zero, a TCP nust
process the RST and URG fields of all incom ng segnents.

W have taken advantage of the numbering schene to protect certain
control information as well. This is achieved by inplicitly including
some control flags in the sequence space so they can be retransmtted
and acknow edged wi thout confusion (i.e., one and only one copy of the
control will be acted upon). Control information is not physically
carried in the segnment data space. Consequently, we nust adopt rules
for inplicitly assigning sequence nunbers to control. The SYN and FIN
are the only controls requiring this protection, and these controls
are used only at connection opening and closing. For sequence nunber
pur poses, the SYN is considered to occur before the first actual data
octet of the segnment in which it occurs, while the FINis considered
to occur after the last actual data octet in a segnment in which it
occurs. The segnment length (SEG LEN) includes both data and sequence
space occupying controls. When a SYNis present then SEG SEQ is the
sequence nunmber of the SYN

[Page 26]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

Initial Sequence Number Sel ection

The protocol places no restriction on a particular connection being
used over and over again. A connection is defined by a pair of
sockets. New instances of a connection will be referred to as

i ncarnations of the connection. The problemthat arises fromthis is
-- "how does the TCP identify duplicate segnents from previous

i ncarnati ons of the connection?" This problem becones apparent if the
connection is being opened and cl osed in quick succession, or if the
connection breaks with | oss of nmenory and is then reestablished.

To avoid confusion we nust prevent segnments from one incarnation of a
connection from being used while the sanme sequence nunbers may stil

be present in the network froman earlier incarnation. W want to
assure this, even if a TCP crashes and | oses all know edge of the
sequence nunbers it has been using. When new connections are created,
an initial sequence nunber (I1SN) generator is enployed which selects a
new 32 bit ISN. The generator is bound to a (possibly fictitious) 32
bit clock whose |l ow order bit is increnmented roughly every 4

m croseconds. Thus, the I SN cycles approxi mately every 4.55 hours.
Since we assune that segnents will stay in the network no nore than

t he Maxi mum Segnent Lifetime (MSL) and that the MSL is |less than 4.55
hours we can reasonably assunme that I1SN's will be unique.

For each connection there is a send sequence nunber and a receive
sequence nunber. The initial send sequence nunber (ISS) is chosen by
the data sending TCP, and the initial receive sequence nunber (IRS) is
| earned during the connection establishing procedure.

For a connection to be established or initialized, the two TCPs nust
synchroni ze on each other’s initial sequence nunbers. This is done in
an exchange of connection establishing segnents carrying a control bit
called "SYN' (for synchronize) and the initial sequence numbers. As a
short hand, segnents carrying the SYN bit are also called "SYNs".

Hence, the solution requires a suitable nechanismfor picking an
initial sequence nunber and a slightly involved handshake to exchange
the 1SN s.

The synchroni zation requires each side to send it’s own initial
sequence nunber and