RFC 9399
Internet X.509 Public Key Infrastructure: Logotypes in X.509 Certificates

Abstract
This document specifies a certificate extension for including logotypes in public key certificates and attribute certificates. This document obsoletes RFCs 3709 and 6170.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc9399.

Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.
Table of Contents

1. Introduction
 1.1. Certificate-Based Identification
 1.2. Selection of Certificates
 1.3. Combination of Verification Techniques
 1.4. Requirements Language

2. Different Types of Logotypes in Certificates

3. Logotype Data

4. Logotype Certificate Extension
 4.1. Extension Format
 4.2. Conventions for LogotypeImageInfo
 4.3. Embedded Images
 4.4. Other Logotypes
 4.4.1. Loyalty Logotype
 4.4.2. Certificate Background Logotype
 4.4.3. Certificate Image Logotype

5. Type of Certificates

6. Use in Clients

7. Image Formats

8. Audio Formats

9. Security Considerations

10. Privacy Considerations

11. IANA Considerations

12. References
 12.1. Normative References
 12.2. Informative References

Appendix A. ASN.1 Modules
 A.1. ASN.1 Modules with 1988 Syntax
 A.2. ASN.1 Module with 2002 Syntax
1. Introduction

This specification supplements [RFC5280], which profiles public key certificates and certificate revocation lists (CRLs) for use in the Internet, and it supplements [RFC5755], which profiles attribute certificates for use in the Internet.

This document obsoletes [RFC3709] and [RFC6170]. Appendix C provides a summary of the changes since the publication of [RFC3709] and [RFC6170].

The basic function of a certificate is to bind a public key to the identity of an entity (the subject). From a strictly technical viewpoint, this goal could be achieved by signing the identity of the subject together with its public key. However, the art of Public Key Infrastructure (PKI) has developed certificates far beyond this functionality in order to meet the needs of modern global networks and heterogeneous information and operational technology structures.

Certificate users must be able to determine certificate policies, appropriate key usage, assurance level, and name form constraints. Before a relying party can make an informed decision whether a particular certificate is trustworthy and relevant for its intended usage, a certificate may be examined from several different perspectives.

Systematic processing is necessary to determine whether a particular certificate meets the predefined prerequisites for an intended usage. Much of the information contained in certificates is appropriate and effective for machine processing; however, this information is not suitable for a corresponding human trust and recognition process.

Humans prefer to structure information into categories and symbols. Most humans associate complex structures of reality with easily recognizable logotypes and marks. Humans tend to trust things that they recognize from previous experiences. Humans may examine information to
confirm their initial reaction. Very few consumers actually read all terms and conditions they agree to in accepting a service; instead, they commonly act on trust derived from previous experience and recognition.

A big part of this process is branding. Service providers and product vendors invest a lot of money and resources into creating a strong relation between positive user experiences and easily recognizable trademarks, servicemarks, and logotypes.

Branding is also pervasive in identification instruments, including identification cards, passports, driver's licenses, credit cards, gasoline cards, and loyalty cards. Identification instruments are intended to identify the holder as a particular person or as a member of the community. The community may represent the subscribers of a service or any other group. Identification instruments, in physical form, commonly use logotypes and symbols, solely to enhance human recognition and trust in the identification instrument itself. They may also include a registered trademark to allow legal recourse for unauthorized duplication.

Since certificates play an equivalent role in electronic exchanges, we examine the inclusion of logotypes in certificates. We consider certificate-based identification and certificate selection.

1.1. Certificate-Based Identification

The need for human recognition depends on the manner in which certificates are used and whether certificates need to be visible to human users. If certificates are to be used in open environments and in applications that bring the user in conscious contact with the result of a certificate-based identification process, then human recognition is highly relevant and may be a necessity.

Examples of such applications include:

- Web server identification where a user identifies the owner of the website.
- Peer email exchange in business-to-business (B2B), business-to-consumer (B2C), and private communications.
- Exchange of medical records and system for medical prescriptions.
- Unstructured e-business applications (i.e., non-EDI applications).
- Wireless client authenticating to a service provider.

Most applications provide the human user with an opportunity to view the results of a successful certificate-based identification process. When the user takes the steps necessary to view these results, the user is presented with a view of a certificate. This solution has two major problems. First, the function to view a certificate is often rather hard to find for a non-technical user. Second, the presentation of the certificate is too technical and is not user friendly. It contains no graphic symbols or logotypes to enhance human recognition.

Many investigations have shown that users of today's applications do not take the steps necessary to view certificates. This could be due to poor user interfaces. Further, many applications are structured to hide certificates from users. The application designers do not want to expose certificates to users at all.
1.2. Selection of Certificates

One situation where software applications must expose human users to certificates is when the user must select a single certificate from a portfolio of certificates. In some cases, the software application can use information within the certificates to filter the list for suitability; however, the user must be queried if more than one certificate is suitable. The human user must select one of them.

This situation is comparable to a person selecting a suitable plastic card from their wallet. In this situation, substantial assistance is provided by card color, location, and branding.

In order to provide similar support for certificate selection, the users need tools to easily recognize and distinguish certificates. Introduction of logotypes into certificates provides the necessary graphic.

1.3. Combination of Verification Techniques

The use of logotypes will, in many cases, affect the user's decision to trust and use a certificate. It is therefore important that there be a distinct and clear architectural and functional distinction between the processes and objectives of the automated certificate verification and human recognition.

Since logotypes are only aimed for human interpretation and contain data that is inappropriate for computer-based verification schemes, the logotype certificate extension MUST NOT be an active component in automated certification path validation, as specified in Section 6 of [RFC5280].

Automated certification path verification determines whether the end entity certificate can be verified according to defined policy. The algorithm for this verification is specified in [RFC5280].

The automated processing provides assurance that the certificate is valid. It does not indicate whether the subject is entitled to any particular information or whether the subject ought to be trusted to perform a particular service. These are authorization decisions. Automatic processing will make some authorization decisions, but others, depending on the application context, involve the human user.

In some situations, where automated procedures have failed to establish the suitability of the certificate to the task, the human user is the final arbitrator of the post certificate verification authorization decisions. In the end, the human will decide whether or not to accept an executable email attachment, to release personal information, or to follow the instructions displayed by a web browser. This decision will often be based on recognition and previous experience.

The distinction between systematic processing and human processing is rather straightforward. They can be complementary. While the systematic process is focused on certification path construction and verification, the human acceptance process is focused on recognition and related previous experience.
There are some situations where systematic processing and human processing interfere with each other. These issues are discussed in the Section 9.

1.4. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Different Types of Logotypes in Certificates

This specification defines the inclusion of three standard logotype types:

- community logotype
- issuer organization logotype
- subject organization logotype

The community logotype is the general mark for a community. It identifies a service concept for entity identification and certificate issuance. Many issuers may use a community logotype to co-brand with a global community in order to gain global recognition of its local service provision. This type of community branding is very common in the credit card business, where local independent card issuers include a globally recognized brand (such as Visa and Mastercard). Certificate issuers may include more than one community logotype to indicate participation in more than one global community.

The issuer organization logotype is a logotype representing the organization identified as part of the issuer name in the certificate.

The subject organization logotype is a logotype representing the organization identified in the subject name in the certificate.

In addition to the standard logotype types, this specification accommodates inclusion of other logotype types where each class of logotype is defined by an object identifier. The object identifier can be either locally defined or an identifier defined in Section 4.4 of this document.

3. Logotype Data

This specification defines two types of logotype data: image data and audio data. Implementations MUST support image data; however, support for audio data is OPTIONAL.

Image and audio data for logotypes can be provided by reference by including a URI that identifies the location to the logotype data and a one-way hash of the referenced data in the certificate. The privacy-related properties for remote logotype data depend on four parties: the certificate relying parties that use the information in the certificate extension to fetch the
logotype data, the certificate issuers that populate the certificate extension, certificate subscribers that request certificates that include the certificate extension, and server operators that provide the logotype data.

Alternatively, embedding the logotype data in the certificate with direct addressing (as defined in Section 4.3) provides improved privacy properties and depends upon fewer parties. However, this approach can significantly increase the size of the certificate.

Several image objects, representing the same visual content in different formats, sizes, and color palates, may represent each logotype image. At least one of the image objects representing a logotype SHOULD contain an image with a width between 60 pixels and 200 pixels and a height between 45 pixels and 150 pixels.

Several instances of audio data may further represent the same audio sequence in different formats, resolutions, and languages. At least one of the audio objects representing a logotype SHOULD provide text-based audio data suitable for processing by text-to-speech software.

A typical use of text-based audio data is inclusion in web applications where the audio text is placed as the "alt" attribute value of an HTML image (img) element, and the language value obtained from LogotypeAudioInfo is included as the "lang" attribute of that image.

If a logotype of a certain type (as defined in Section 2) is represented by more than one image object, then each image object MUST contain variants of roughly the same visual content. Likewise, if a logotype of a certain type is represented by more than one audio object, then the audio objects MUST contain variants of the same audio information. A spoken message in different languages is considered a variation of the same audio information. When more than one image object or more than one audio object for the same logotype type is included in the certificate, the certificate issuer is responsible for ensuring that the objects contain roughly the same content. Compliant applications MUST NOT display more than one of the image objects and MUST NOT play more than one of the audio objects for any logotype type (see Section 2) at the same time.

A client MAY simultaneously display multiple logotypes of different logotype types. For example, it may display one subject organization logotype while also displaying a community logotype, but it MUST NOT display multiple image variants of the same community logotype.

Each logotype present in a certificate MUST be represented by at least one image data object.

Client applications SHOULD enhance processing and off-line functionality by caching logotype data.

4. Logotype Certificate Extension

This section specifies the syntax and semantics of the logotype certificate extension.
4.1. Extension Format

The logotype certificate extension MAY be included in public key certificates [RFC5280] or attribute certificates [RFC5755]. The logotype certificate extension MUST be identified by the following object identifier:

\[
\text{id-pe-logotype} \text{ OBJECT IDENTIFIER ::= } \\
\{ \text{iso(1) identified-organization(3) dod(6) internet(1)} \\
\text{security(5) mechanisms(5) pkix(7) id-pe(1) 12} \}
\]

This extension MUST NOT be marked critical.

Logotype data may be referenced through either direct or indirect addressing. Client applications SHOULD support both direct and indirect addressing. Certificate issuing applications MUST support direct addressing, and certificate issuing applications SHOULD support indirect addressing.

The direct addressing includes information about each logotype in the certificate, and URIs point to the image and audio data object. Multiple URIs MAY be included for locations for obtaining the same logotype object. Multiple hash values MAY be included, each computed with a different one-way hash function. Direct addressing supports cases where just one or a few alternative images and audio objects are referenced.

The indirect addressing includes one or more references to an external hashed data structure that contains information on the type, content, and location of each image and audio object. Indirect addressing supports cases where each logotype is represented by many alternative audio or image objects.

Both direct and indirect addressing accommodate alternative URIs to obtain exactly the same logotype data. This opportunity for replication is intended to improve availability. Therefore, if a client is unable to fetch the item from one URI, the client SHOULD try another URI in the sequence. All direct addressing URIs SHOULD use the HTTPS scheme (https://...), the HTTP scheme (http://...), or the DATA scheme (data://...) [RFC3986]. However, the "data" URI scheme MUST NOT be used with the indirect addressing. Clients MUST support retrieval of the referenced LogotypeData with HTTP [RFC9110], HTTP with TLS [RFC8446], or subsequent versions of these protocols. Client applications SHOULD also support the "data" URI scheme [RFC2397] for direct addressing with embedded logotype data within the extension.

Note that the HTTPS scheme (https://...) requires the validation of other certificates to establish a secure connection. For this reason, the HTTP scheme (http://...) may be easier for a client to handle. Also, the hash of the logotype data provides data integrity.

The logotype certificate extension MUST have the following syntax:

LogotypeExtn ::= SEQUENCE {
 communityLogos [0] EXPLICIT SEQUENCE OF LogotypeInfo OPTIONAL,
issuerLogo [1] EXPLICIT LogotypeInfo OPTIONAL,
subjectLogo [2] EXPLICIT LogotypeInfo OPTIONAL,
otherLogos [3] EXPLICIT SEQUENCE OF OtherLogotypeInfo
OPTIONAL }

LogotypeInfo ::= CHOICE {
direct [0] LogotypeData,
indirect [1] LogotypeReference }

LogotypeData ::= SEQUENCE {
image SEQUENCE OF LogotypeImage OPTIONAL,
audio [1] SEQUENCE OF LogotypeAudio OPTIONAL }

LogotypeImage ::= SEQUENCE {
imageDetails LogotypeDetails,
imageInfo LogotypeImageInfo OPTIONAL }

LogotypeAudio ::= SEQUENCE {
audioDetails LogotypeDetails,
audioInfo LogotypeAudioInfo OPTIONAL }

LogotypeDetails ::= SEQUENCE {
mediaType IA5String, -- Media type name and optional
-- parameters
logotypeHash SEQUENCE SIZE (1..MAX) OF HashAlgAndValue,
logotypeURI SEQUENCE SIZE (1..MAX) OF IA5String }

LogotypeImageInfo ::= SEQUENCE {
type [0] LogotypeImageType DEFAULT color,
fileSize INTEGER, -- In octets, 0=unspecified
xSize INTEGER, -- Horizontal size in pixels
ySize INTEGER, -- Vertical size in pixels
resolution LogotypeImageResolution OPTIONAL,
language [4] IA5String OPTIONAL } -- RFC 5646 Language Tag

LogotypeImageType ::= INTEGER { grayScale(0), color(1) }

LogotypeImageResolution ::= CHOICE {
numBits [1] INTEGER, -- Resolution in bits per pixel
tableSize [2] INTEGER } -- Number of colors or grey tones

LogotypeAudioInfo ::= SEQUENCE {
fileSize INTEGER, -- In octets, 0=unspecified
playTime INTEGER, -- In milliseconds, 0=unspecified
channels INTEGER, -- 0=unspecified,
-- 1=mono, 2=stereo, 4=quad
sampleRate [3] INTEGER OPTIONAL, -- Samples per second
language [4] IA5String OPTIONAL } -- RFC 5646 Language Tag

OtherLogotypeInfo ::= SEQUENCE {
logotypeType OBJECT IDENTIFIER,
info LogotypeInfo }

LogotypeReference ::= SEQUENCE {
refStructHash SEQUENCE SIZE (1..MAX) OF HashAlgAndValue,
refStructURI SEQUENCE SIZE (1..MAX) OF IA5String }
-- Places to get the same LogotypeData
-- image or audio object
When using indirect addressing, the URI (refStructURI) pointing to the external data structure MUST point to a resource that contains the DER-encoded data with the syntax LogotypeData. At least one of the optional elements in the LogotypeExtn structure MUST be present.

When using direct addressing, at least one of the optional elements in the LogotypeData structure MUST be present.

The LogotypeReference and LogotypeDetails structures explicitly identify one or more one-way hash functions employed to authenticate referenced image or audio objects. Certification Authorities (CAs) MUST include a hash value for each referenced object, calculated on the whole object. CAs MUST use the one-way hash function that is associated with the certificate signature to compute one hash value, and CAs MAY include other hash values. Clients MUST compute a one-way hash value using one of the identified functions, and clients MUST discard the logotype data if the computed hash value does not match the hash value in the certificate extension.

A media type is used to specify the format of the image or audio object containing the logotype data. The mediaType field MUST contain a string that is constructed according to the ABNF rule for media-type provided in Section 8.3.1 of [RFC9110]. Media types MAY include parameters. To keep the mediaType field as small as possible, optional whitespace SHOULD NOT be included.

Image format requirements are specified in Section 7, and audio format requirements are specified in Section 8.

When language is specified, the language tag MUST use the syntax in [RFC5646].

The following logotype types are defined in this specification:

- community logotype: If communityLogos is present, the logotypes MUST represent one or more communities with which the certificate issuer is affiliated. The communityLogos MAY be present in an end entity certificate, a CA certificate, or an attribute certificate. The communityLogos contains a sequence of community logotypes, each representing a different community. If more than one community logotype is present, they MUST be placed in order of preferred appearance. Some clients MAY choose to display a subset of the present community logos; therefore, the placement within the sequence aids the client selection. The most preferred logotype MUST be first in the sequence, and the least preferred logotype MUST be last in the sequence.

- issuer organization logotype: If issuerLogo is present, the logotype MUST represent the issuer's organization. The logotype MUST be consistent with, and require the presence of, an organization name stored in the organization attribute in the issuer field (for either a public key certificate or attribute certificate). The issuerLogo MAY be present in an end entity certificate, a CA certificate, or an attribute certificate.
• subject organization logotype: If subjectLogo is present, the logotype MUST represent the subject’s organization. The logotype MUST be consistent with, and require the presence of, an organization name stored in the organization attribute in the subject field (for either a public key certificate or attribute certificate). The subjectLogo MAY be present in an end entity certificate, a CA certificate, or an attribute certificate.

The relationship between the subject organization and the subject organization logotype, and the relationship between the issuer and either the issuer organization logotype or the community logotype, are relationships asserted by the issuer. The policies and practices employed by the issuer that check subject organization logotypes or claims about its issuer and community logotypes are outside the scope of this document.

4.2. Conventions for LogotypeImageInfo

When the optional LogotypeImageInfo is included with a logotype image, the parameters MUST be used with the following semantics and restrictions.

The xSize and ySize fields represent the recommended display size for the logotype image. When a value of 0 (zero) is present, no recommended display size is specified. When non-zero values are present and these values differ from corresponding size values in the referenced image object, then the referenced image SHOULD be scaled to fit within the size parameters of LogotypeImageInfo while preserving the x and y ratio. Dithering may produce a more appropriate image than linear scaling.

The resolution field is redundant for all logotype image formats listed in Section 7. The optional resolution field SHOULD be omitted when the image format already contains this information.

4.3. Embedded Images

If the logotype image is provided through direct addressing, then the image MAY be stored within the logotype certificate extension using the "data" scheme [RFC2397]. The syntax of the "data" URI scheme is shown below, which incorporates Errata ID 2045 and uses modern ABNF [RFC5234]:

```
dataurl  = "data:" [ media-type ] [ ";base64" ] "," data
data     = *(reserved / unreserved / escaped)
reserved  = ";" / "/" / "?" / ":" / "%" / ";@" / ";&" / ";=" / ";+" / "$" / ";"
unreserved = alphanum / mark
alphanum   = ALPHA / DIGIT
mark       = "-" / "_" / ";." / ";!" / ";~" / "*" / "\" / "\" / "(" / ")"
escaped   = "%" hex hex
hex        = HEXDIG / ";a" / ";b" / ";c" / ";d" / ";e" / ";f"
```

where media-type is defined in Section 8.3.1 of [RFC9110] and ALPHA, DIGIT, and HEXDIG are defined in Appendix B.1 of [RFC5234].
When including the image data in the logotype certificate extension using the "data" URI scheme, the following conventions apply:

- The value of mediaType in LogotypeDetails MUST be identical to the media type value in the "data" URL.
- The hash of the image MUST be included in logotypeHash and MUST be calculated over the same data as it would have been if the image had been referenced through a link to an external resource.

NOTE: As the "data" URI scheme is processed as a data source rather than as a URL, the image data is typically not limited by any URL length limit settings that otherwise apply to URLs in general.

NOTE: Implementations need to be cautious about the size of images included in a certificate in order to ensure that the size of the certificate does not prevent the certificate from being used as intended.

4.4. Other Logotypes

Logotypes identified by otherLogos (as defined in Section 4.1) can be used to enhance the display of logotypes and marks that represent partners, products, services, or any other characteristic associated with the certificate or its intended application environment when the standard logotype types are insufficient.

The conditions and contexts of the intended use of these logotypes are defined at the discretion of the local client application.

Three other logotype types are defined in the follow subsections.

4.4.1. Loyalty Logotype

When a loyalty logotype appears in otherLogos, it MUST be identified by the id-logo-loyalty object identifier.

| id-logo OBJECT IDENTIFIER ::= { id-pkix 20 } |
| id-logo-loyalty OBJECT IDENTIFIER ::= { id-logo 1 } |

A loyalty logotype, if present, MUST contain a logotype associated with a loyalty program related to the certificate or its use. The relation between the certificate and the identified loyalty program is beyond the scope of this document. The logotype certificate extension MAY contain more than one loyalty logotype.
If more than one loyalty logotype is present, they **MUST** be placed in order of preferred appearance. Some clients **MAY** choose to display a subset of the present loyalty logotype data; therefore, the placement within the sequence aids the client selection. The most preferred loyalty logotype data **MUST** be first in the sequence, and the least preferred loyalty logotype data **MUST** be last in the sequence.

4.4.2. Certificate Background Logotype

When a certificate background logotype appears in otherLogos, it **MUST** be identified by the id-logo-background object identifier.

```
id-logo-background OBJECT IDENTIFIER ::= { id-logo 2 }
```

The certificate background logotype, if present, **MUST** contain a graphical image intended as a background image for the certificate and/or a general audio sequence for the certificate. The background image **MUST** allow black text to be clearly read when placed on top of the background image. The logotype certificate extension **MUST NOT** contain more than one certificate background logotype.

4.4.3. Certificate Image Logotype

When a certificate image logotype appears in otherLogos, it **MUST** be identified by the id-logo-certImage object identifier.

```
id-logo-certImage OBJECT IDENTIFIER ::= { id-logo 3 }
```

The certificate image logotype, if present, aids human interpretation of a certificate by providing meaningful visual information to the user interface (UI). The logotype certificate extension **MUST NOT** contain more than one certificate image logotype.

Typical situations when a human needs to examine the visual representation of a certificate are:

- A person establishes a secured channel with an authenticated service. The person needs to determine the identity of the service based on the authenticated credentials.
- A person validates the signature on critical information, such as signed executable code, and needs to determine the identity of the signer based on the signer's certificate.
- A person is required to select an appropriate certificate to be used when authenticating to a service or identity management infrastructure. The person needs to see the available certificates in order to distinguish between them in the selection process.

The display of certificate information to humans is challenging due to lack of well-defined semantics for critical identity attributes. Unless the application has out-of-band knowledge about a particular certificate, the application will not know the exact nature of the data stored in common identification attributes, such as serialNumber, organizationName, country, etc. Consequently, the application can display the actual data but faces the problem of labeling that
data in the UI and informing the human about the exact nature (semantics) of that data. It is also challenging for the application to determine which identification attributes are important to display and how to organize them in a logical order.

When present, the certificate image **MUST** be a complete visual representation of the certificate. This means that the display of this certificate image represents all information about the certificate that the issuer subjectively defines as relevant to show to a typical human user within the typical intended use of the certificate, giving adequate information about at least the following three aspects of the certificate:

- certificate context
- certificate issuer
- certificate subject

Certificate context information is visual marks and/or textual information that helps the typical user to understand the typical usage and/or purpose of the certificate.

It is up to the issuer to decide what information – in the form of text, graphical symbols, and elements – represents a complete visual representation of the certificate. However, the visual representation of certificate subject and certificate issuer information from the certificate **MUST** have the same meaning as the textual representation of that information in the certificate itself.

Applications providing a Graphical User Interface (GUI) to the certificate user **MAY** present a certificate image as the only visual representation of a certificate; however, the certificate user **SHOULD** be able to easily obtain the details of the certificate content.

5. Type of Certificates

Logotypes **MAY** be included in public key certificates and attribute certificates at the discretion of the certificate issuer; however, the relying party **MUST NOT** use the logotypes as part of certification path validation or automated trust decisions. The sole purpose of logotypes is to enhance the display of a particular certificate, regardless of its position in a certification path.

6. Use in Clients

All PKI implementations require relying party software to have some mechanism to determine whether a trusted CA issues a particular certificate. This is an issue for certification path validation, including consistent policy and name checking.

After a certification path is successfully validated, the replying party trusts the information that the CA includes in the certificate, including any certificate extensions. The client software can choose to make use of such information, or the client software can ignore it. If the client is unable to support a provided logotype, the client **MUST NOT** report an error; instead, the client **MUST** behave as though no logotype certificate extension was included in the certificate. Current standards do not provide any mechanism for cross-certifying CAs to constrain subordinate CAs from including private extensions (see Section 9).
Consequently, if relying party software accepts a CA, then it should be prepared to (unquestioningly) display the associated logotypes to its human user, given that it is configured to do so. Information about the logotypes is provided so that the replying party software can select the one that will best meet the needs of the human user. This choice depends on the abilities of the human user, as well as the capabilities of the platform on which the replying party software is running. If none of the provided logotypes meets the needs of the human user or matches the capabilities of the platform, then the logotypes can be ignored.

A client MAY, subject to local policy, choose to display none, one, or any number of the logotypes in the logotype certificate extension. In many cases, a client will be used in an environment with a good network connection and also used in an environment with little or no network connectivity. For example, a laptop computer can be docked with a high-speed LAN connection, or it can be disconnected from the network altogether. In recognition of this situation, the client MUST include the ability to disable the fetching of logotypes. However, locally cached logotypes can still be displayed when the user disables the fetching of additional logotypes.

A client MAY, subject to local policy, choose any combination of audio and image presentation for each logotype. That is, the client MAY display an image with or without playing a sound, and it MAY play a sound with or without displaying an image. A client MUST NOT play more than one logotype audio sequence at the same time.

The logotype is to be displayed in conjunction with other identity information contained in the certificate. The logotype is not a replacement for this identity information.

Care is needed when designing replying party software to ensure that an appropriate context of logotype information is provided. This is especially difficult with audio logotypes. It is important that the human user be able to recognize the context of the logotype, even if other audio streams are being played.

If the relying party software is unable to successfully validate a particular certificate, then it MUST NOT display any logotype data associated with that certificate.

7. Image Formats

Animated images SHOULD NOT be used.

The following table lists common image formats and the corresponding media type. The table also indicates the support requirements for these image formats. The file name extensions commonly used for each of these formats is also provided. Implementations MAY support other image formats.

<table>
<thead>
<tr>
<th>Format</th>
<th>Media Type</th>
<th>Extension</th>
<th>References</th>
<th>Implement?</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG</td>
<td>image/jpeg</td>
<td>.jpg</td>
<td>[JPEG]</td>
<td>MUST support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.jpeg</td>
<td>[RFC2046]</td>
<td></td>
</tr>
</tbody>
</table>
NOTE: The image/svg+xml-compressed media type is widely implemented, but it has not yet been registered with IANA.

When a Scalable Vector Graphics (SVG) image is used, whether the image is compressed or not, the SVG Tiny profile [SVGT] MUST be followed, with these additional restrictions:

- The SVG image MUST NOT contain any Internationalized Resource Identifier (IRI) references to information stored outside of the SVG image of type B, C, or D, according to Section 14.1.4 of [SVGT].
- The SVG image MUST NOT contain any script element, according to Section 15.2 of [SVGT].
- The XML structure in the SVG file MUST use linefeed (0x0A) as the end-of-line (EOL) character when calculating a hash over the SVG image.

When a GZIP-compressed SVG image is fetched with HTTP, the client will receive a response that includes these headers:

```
Content-Type: image/svg+xml
Content-Encoding: gzip
```

In this case, the octet stream of type image/svg+xml is compressed with GZIP [RFC1952], as specified in [SVGR].

When an uncompressed SVG image is fetched with HTTP, the client will receive a response with the same Content-Type header but no Content-Encoding header.

<table>
<thead>
<tr>
<th>Format</th>
<th>Media Type</th>
<th>Extension</th>
<th>References</th>
<th>Implement?</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIF</td>
<td>image/gif</td>
<td>.gif</td>
<td>[GIF]</td>
<td>MUST support</td>
</tr>
<tr>
<td>SVG</td>
<td>image/svg+xml</td>
<td>.svg</td>
<td>[SVGT]</td>
<td>SHOULD support</td>
</tr>
<tr>
<td>SVG + GZIP</td>
<td>image/svg+xml+gzip</td>
<td>.svg.gz</td>
<td>[SVGT]</td>
<td>MUST support</td>
</tr>
<tr>
<td>PNG</td>
<td>image/png</td>
<td>.png</td>
<td>[ISO15948]</td>
<td>SHOULD support</td>
</tr>
<tr>
<td>PDF</td>
<td>application/pdf</td>
<td>.pdf</td>
<td>[ISO32000]</td>
<td>MAY support</td>
</tr>
</tbody>
</table>

Table 1: Image Formats
Whether the SVG image is GZIP-compressed or uncompressed, the hash value for the SVG image is calculated over the uncompressed SVG content with canonicalized EOL characters, as specified above.

When an SVG image is embedded in the certificate extension using the “data” URL scheme, the SVG image data MUST be provided in GZIP-compressed form, and the XML structure, prior to compression, SHOULD use linefeed (0x0A) as the end-of-line (EOL) character.

When a bitmap image is used, the PNG [ISO15948] format SHOULD be used.

According to [ISO32000], when a Portable Document Format (PDF) document is used, it MUST also be formatted according to the profile PDF/A [ISO19005].

8. Audio Formats

Implementations that support audio MUST support the MP3 audio format [MP3] with a media type of “audio/mpeg” [RFC3003]. Implementations SHOULD support text-based audio data with a media type of “text/plain;charset=UTF-8”. Implementations MAY support other audio formats.

Text-based audio data using the media type of “text/plain;charset=UTF-8” is intended to be used by text-to-speech software. When this audio type is used, the following requirements apply:

- LogotypeAudioInfo MUST be present and specify the language of the text.
- The fileSize, playTime, and channels elements of LogotypeAudioInfo MUST have the value of 0.
- The sampleRate element of LogotypeAudioInfo MUST be absent.

9. Security Considerations

Implementations that simultaneously display multiple logotype types (subject organization, issuer organization, community, or other) MUST ensure that there is no ambiguity as to the binding between the image and the type of logotype that the image represents. "Logotype type" is defined in Section 1.1, and it refers to the type of entity or affiliation represented by the logotype, not the of binary format of the image or audio.

Logotypes are very difficult to securely and accurately define. Names are also difficult in this regard, but logotypes are even worse. It is quite difficult to specify what is, and what is not, a legitimate logotype of an organization. There is an entire legal structure around this issue, and it will not be repeated here. However, issuers should be aware of the implications of including images associated with a trademark or servicemark before doing so. As logotypes can be difficult (and sometimes expensive) to verify, the possibility of errors related to assigning wrong logotypes to organizations is increased.
This is not a new issue for electronic identification instruments. It is already dealt with in a number of similar situations in the physical world, including physical employee identification cards. In addition, there are situations where identification of logotypes is rather simple and straightforward, such as logotypes for well-known industries and institutes. These issues should not stop those service providers who want to issue logotypes from doing so, where relevant.

It is impossible to prevent fraudulent creation of certificates by dishonest or badly performing issuers, containing names and logotypes that the issuer has no claim to or has failed to check correctly. Such certificates could be created in an attempt to socially engineer a user into accepting a certificate. The premise used for the logotype work is thus that logotype graphics in a certificate are trusted only if the certificate is successfully validated within a valid path. It is thus imperative that the representation of any certificate that fails to validate is not enhanced in any way by using the logotype data.

This underlines the necessity for CAs to provide reliable services and the relying party's responsibility and need to carefully select which CAs are trusted to provide public key certificates.

This also underlines the general necessity for relying parties to use up-to-date software libraries to render or dereference data from external sources, including logotype data in certificates, to minimize risks related to processing potentially malicious data before it has been adequately verified and validated. Implementers should review the guidance in Section 7 of [RFC3986].

Referenced image objects are hashed in order to bind the image to the signature of the certificate. Some image types, such as SVG, allow part of the image to be collected from an external source by incorporating a reference to an external file that contains the image. If this feature were used within a logotype image, the hash of the image would only cover the URI reference to the external image file but not the referenced image data. Clients SHOULD verify that SVG images meet all requirements listed in Section 7 and reject images that contain references to external data.

CAs issuing certificates with embedded logotype images should be cautious when accepting graphics from the certificate requester for inclusion in the certificate if the hash algorithm used to sign the certificate is vulnerable to collision attacks, as described in [RFC6151]. In such a case, the accepted image may contain data that could help an attacker to obtain colliding certificates with identical certificate signatures.

Certification paths may also impose name constraints that are systematically checked during certification path processing, which, in theory, may be circumvented by logotypes.

Certificate path processing, as defined in [RFC5280], does not constrain the inclusion of logotype data in certificates. A parent CA can constrain certification path validation such that subordinate CAs cannot issue valid certificates to end entities outside a limited name space or outside specific certificate policies. A malicious CA can comply with these name and policy requirements and still include inappropriate logotypes in the certificates that it issues. These certificates will pass the certification path validation algorithm, which means the client will trust the logotypes in the certificates. Since there is no technical mechanism to prevent or control subordinate CAs from...
including the logotype certificate extension or its contents, where appropriate, a parent CA could employ a legal agreement to impose a suitable restriction on the subordinate CA. This situation is not unique to the logotype certificate extension.

When a relying party fetches remote logotype data, a mismatch between the media type provided in the mediaType field of the LogotypeDetails and the Content-Type HTTP header of the retrieved object **MUST** be treated as a failure, and the fetched logotype data should not be presented to the user. However, if more than one location for the remote logotype data is provided in the certificate extension, the relying party **MAY** try to fetch the remote logotype data from an alternate location to resolve the failure.

When a subscriber requests the inclusion of remote logotype data in a certificate, the CA cannot be sure that any logotype data will be available at the provided URI for the entire validity period of the certificate. To mitigate this concern, the CA may provide the logotype data from a server under its control, rather than a subscriber-controlled server.

The controls available to a parent CA to protect itself from rogue subordinate CAs are non-technical. They include:

- Contractual agreements of suitable behavior, including terms of liability in case of material breach.
- Control mechanisms and procedures to monitor and follow the behavior of subordinate CAs, including Certificate Transparency [RFC9162].
- Use of certificate policies to declare an assurance level of logotype data, as well as to guide applications on how to treat and display logotypes.
- Use of revocation functions to revoke any misbehaving CA.

There is not a simple, straightforward, and absolute technical solution. Rather, involved parties must settle some aspects of PKI outside the scope of technical controls. As such, issuers need to clearly identify and communicate the associated risks.

10. Privacy Considerations

Certificates are commonly public objects, so the inclusion of privacy-sensitive information in certificates should be avoided. The more information that is included in a certificate, the greater the likelihood that the certificate will reveal privacy-sensitive information. The inclusion of logotype data needs to be considered in this context.

Logotype data might be fetched from a server when it is needed. By watching activity on the network, an observer can determine which clients are making use of certificates that contain particular logotype data. Since clients are expected to locally cache logotype data, network traffic to the server containing the logotype data will not be generated every time the certificate is used. Further, when logotype data is not cached, activity on the network might reveal certificate usage frequency. Even when logotype data is cached, regardless of whether direct or indirect addressing is employed, network traffic monitoring could reveal when logotype data is fetched for the first time. Implementations **MAY** encrypt fetches of logotype data using HTTPS, padding...
the data to a common size to reduce visibility into the data that is being fetched. Likewise, servers MAY reduce visibility into the data that is being returned by encrypting with HTTPS and padding to a few common sizes.

Similarly, when fetching logotype data from a server, the server operator can determine which clients are making use of certificates that contain particular logotype data. As above, locally caching logotype data will eliminate the need to fetch the logotype data each time the certificate is used, and lack of caching would reveal usage frequency. Even when implementations cache logotype data, regardless of whether direct or indirect addressing is employed, the server operator could observe when logotype data is fetched for the first time.

In addition, the use of an encrypted DNS mechanism, such as DNS over TLS (DoT) [RFC7858] or DNS over HTTPS (DoH) [RFC9230], hides the name resolution traffic, which is usually a first step in fetching remote logotype objects.

When the "data" URI scheme is used with direct addressing, there is no network traffic to fetch logotype data, which avoids the observations of network traffic or server operations described above. To obtain this benefit, the certificate will be larger than one that contains a URL. Due to the improved privacy posture, the "data" URI scheme with direct addressing will be the only one that is supported by some CAs. Privacy-aware certificate subscribers MAY wish to insist that logotype data is embedded in the certificate with the "data" URI scheme with direct addressing.

In cases where logotype data is cached by the relying party, the cache index should include the hash values of the associated logotype data with the goal of fetching the logotype data only once, even when it is referenced by multiple URIs. The index should include hash values for all supported hash algorithms. The cached data should include the media type as well as the logotype data. Implementations should give preference to logotype data that is already in the cache when multiple alternatives are offered in the LogotypeExtn certificate extension.

When the "data" URI scheme is used, the relying party MAY add the embedded logotype data to the local cache, which could avoid the need to fetch the logotype data if it is referenced by a URL in another certificate.

When fetching remote logotype data, relying parties should use the most privacy-preserving options that are available to minimize the opportunities for servers to “fingerprint” clients. For example, avoid cookies, ETags, and client certificates.

When a relying party encounters a new certificate, the lack of network traffic to fetch logotype data might indicate that a certificate with references to the same logotype data has been previously processed and cached.

TLS 1.3 [RFC8446] includes the ability to encrypt the server’s certificate in the TLS handshake, which helps hide the server’s identity from anyone that is watching activity on the network. If the server’s certificate includes remote logotype data, the client fetching that data might disclose the otherwise protected server identity.
11. IANA Considerations

For the new ASN.1 module in Appendix A.2, IANA has assigned the following OID in the "SMI Security for PKIX Module Identifier" registry (1.3.6.1.5.5.7.0):

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>id-mod-logotype-2022</td>
<td>RFC 9399</td>
</tr>
</tbody>
</table>

Table 2

IANA has updated the entries in the "Structure of Management Information (SMI) Numbers" registry that referred to [RFC3709] or [RFC6170] to refer to this document. These entries are noted in the tables below.

From the "SMI Security for PKIX Module Identifier" registry (1.3.6.1.5.5.7.0):

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>id-mod-logotype</td>
<td>RFC 9399</td>
</tr>
<tr>
<td>68</td>
<td>id-mod-logotype-certimage</td>
<td>RFC 9399</td>
</tr>
</tbody>
</table>

Table 3

From the "SMI Security for PKIX Certificate Extension" registry (1.3.6.1.5.5.7.1):

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>id-pe-logotype</td>
<td>RFC 9399</td>
</tr>
</tbody>
</table>

Table 4

From the "SMI Security for PKIX Other Logotype Identifiers" registry (1.3.6.1.5.5.7.20):

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>id-logo-loyalty</td>
<td>RFC 9399</td>
</tr>
<tr>
<td>2</td>
<td>id-logo-background</td>
<td>RFC 9399</td>
</tr>
<tr>
<td>3</td>
<td>id-logo-certImage</td>
<td>RFC 9399</td>
</tr>
</tbody>
</table>

Table 5
12. References

12.1. Normative References

12.2. Informative References

Santesson, et al. Standards Track Page 23
Appendix A. ASN.1 Modules

A.1. ASN.1 Modules with 1988 Syntax

This appendix contains two ASN.1 modules, both using the old syntax [OLD-ASN1].

The first ASN.1 module provides the syntax for the logotype certificate extension. Only comments have changed in the module from [RFC3709] and the IMPORTS now come from [RFC5280].

The second ASN.1 module provides the certificate image object identifier. The module is unchanged from [RFC6170].
<CODE BEGINS>
LogotypeCertExtn
{ iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-logotype(22) }

DEFINITIONS IMPLICIT TAGS ::= BEGIN

IMPORTS
 AlgorithmIdentifier FROM PKIX1Explicit88 -- RFC 5280
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit(18) };

-- Logotype Certificate Extension OID
id-pe-logotype OBJECT IDENTIFIER ::=
{ iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-pe(1) 12 }

-- Logotype Certificate Extension Syntax
LogotypeExtn ::= SEQUENCE {
 communityLogos [0] EXPLICIT SEQUENCE OF LogotypeInfo OPTIONAL,
 issuerLogo [1] EXPLICIT LogotypeInfo OPTIONAL,
 subjectLogo [2] EXPLICIT LogotypeInfo OPTIONAL,
 otherLogos [3] EXPLICIT SEQUENCE OF OtherLogotypeInfo
 OPTIONAL }

-- Note: At least one of the OPTIONAL components MUST be present
LogotypeInfo ::= CHOICE {
 direct [0] LogotypeData,
 indirect [1] LogotypeReference }

LogotypeData ::= SEQUENCE {
 image SEQUENCE OF LogotypeImage OPTIONAL,
 audio [1] SEQUENCE OF LogotypeAudio OPTIONAL }

-- Note: At least one of the OPTIONAL components MUST be present
LogotypeImage ::= SEQUENCE {
 imageDetails LogotypeDetails,
 imageInfo LogotypeImageInfo OPTIONAL }

LogotypeAudio ::= SEQUENCE {
 audioDetails LogotypeDetails,
 audioInfo LogotypeAudioInfo OPTIONAL }

LogotypeDetails ::= SEQUENCE {
 mediaType IA5String, -- Media type name and optional
 -- parameters
 logotypeHash SEQUENCE SIZE (1..MAX) OF HashAlgAndValue,
 logotypeURI SEQUENCE SIZE (1..MAX) OF IA5String }
</CODE BEGINS>
LogotypeImageInfo ::= SEQUENCE {
 type [0] LogotypeImageType DEFAULT color,
 fileSize INTEGER, -- In octets, 0=unspecified
 xSize INTEGER, -- Horizontal size in pixels
 ySize INTEGER, -- Vertical size in pixels
 resolution LogotypeImageResolution OPTIONAL,
 language [4] IA5String OPTIONAL } -- RFC 5646 Language Tag

LogotypeImageType ::= INTEGER { grayScale(0), color(1) }

LogotypeImageResolution ::= CHOICE {
 numBits [1] INTEGER, -- Resolution in bits per pixel
 tableSize [2] INTEGER } -- Number of colors or grey tones

LogotypeAudioInfo ::= SEQUENCE {
 fileSize INTEGER, -- In octets, 0=unspecified
 playTime INTEGER, -- In milliseconds, 0=unspecified
 channels INTEGER, -- 0=unspecified, 1=mono, 2=stereo, 4=quad
 sampleRate [3] INTEGER OPTIONAL, -- Samples per second
 language [4] IA5String OPTIONAL } -- RFC 5646 Language Tag

OtherLogotypeInfo ::= SEQUENCE {
 logotypeType OBJECT IDENTIFIER,
 info LogotypeInfo }

LogotypeReference ::= SEQUENCE {
 refStructHash SEQUENCE SIZE (1..MAX) OF HashAlgAndValue,
 refStructURI SEQUENCE SIZE (1..MAX) OF IA5String }

-- Places to get the same LogotypeData -- image or audio object

-- Note: The referenced LogotypeData binary file contains a
-- DER-encoded LogotypeData type

HashAlgAndValue ::= SEQUENCE {
 hashAlg AlgorithmIdentifier,
 hashValue OCTET STRING }

-- Other logotype type OIDs

id-logo OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) 20 }

id-logo-loyalty OBJECT IDENTIFIER ::= { id-logo 1 }

id-logo-background OBJECT IDENTIFIER ::= { id-logo 2 }

END

CERT-IMAGE-MODULE { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod-logotype-certimage(68) }

DEFINITIONS EXPLICIT TAGS ::= BEGIN
A.2. ASN.1 Module with 2002 Syntax

Some developers like to use the latest version of ASN.1 standards. This appendix provides an ASN.1 module to assist in that goal. It uses the ASN.1 syntax defined in [NEW-ASN1], and it follows the conventions established in [RFC5912] and [RFC6268].

This ASN.1 module incorporates the module from [RFC3709] and the module from [RFC6170].

Note that [NEW-ASN1] was published in 2021, and all of the features used in this module are backward compatible with the specification that was published in 2002.
-- Logotype Certificate Extension Syntax

LogotypeExtn ::= SEQUENCE {
 communityLogos [0] EXPLICIT SEQUENCE OF LogotypeInfo OPTIONAL,
 issuerLogo [1] EXPLICIT LogotypeInfo OPTIONAL,
 subjectLogo [2] EXPLICIT LogotypeInfo OPTIONAL,
 otherLogos [3] EXPLICIT SEQUENCE OF OtherLogotypeInfo OPTIONAL
}

-- At least one of the OPTIONAL components MUST be present
(WITH COMPONENTS { ..., communityLogos PRESENT } |
 WITH COMPONENTS { ..., issuerLogo PRESENT } |
 WITH COMPONENTS { ..., subjectLogo PRESENT } |
 WITH COMPONENTS { ..., otherLogos PRESENT })

LogotypeInfo ::= CHOICE {
 direct [0] LogotypeData,
 indirect [1] LogotypeReference
}

LogotypeData ::= SEQUENCE {
 image SEQUENCE OF LogotypeImage OPTIONAL,
 audio [1] SEQUENCE OF LogotypeAudio OPTIONAL
}

-- At least one image component MUST be present
(WITH COMPONENTS { ..., image PRESENT })

LogotypeImage ::= SEQUENCE {
 imageDetails LogotypeDetails,
 imageInfo LogotypeImageInfo OPTIONAL
}

LogotypeAudio ::= SEQUENCE {
 audioDetails LogotypeDetails,
 audioInfo LogotypeAudioInfo OPTIONAL
}

LogotypeDetails ::= SEQUENCE {
 mediaType IA5String, -- Media type name and optional parameters
 logotypeHash SEQUENCE SIZE (1..MAX) OF HashAlgAndValue,
 logotypeURI SEQUENCE SIZE (1..MAX) OF IA5String
}

LogotypeImageInfo ::= SEQUENCE {
 type [0] LogotypeImageType DEFAULT color,
 fileSize INTEGER, -- In octets, 0=unspecified
 xSize INTEGER, -- Horizontal size in pixels
 ySize INTEGER, -- Vertical size in pixels
 resolution LogotypeImageResolution OPTIONAL,
}

LogotypeImageType ::= INTEGER { grayScale(0), color(1) }

LogotypeImageResolution ::= CHOICE {
 numBits [1] INTEGER, -- Resolution in bits
 tableSize [2] INTEGER } -- Number of colors or grey tones

LogotypeAudioInfo ::= SEQUENCE {
 fileSize INTEGER, -- In octets, 0=unspecified
 playTime INTEGER, -- In milliseconds, 0=unspecified
 channels INTEGER, -- 0=unspecified
Appendix B. Examples

B.1. Example from RFC 3709

The following example displays a logotype certificate extension containing one issuer organization logotype using direct addressing. The issuer organization logotype image is of the type image/gif. The logotype image is referenced through one URI, and the image is hashed with SHA-256. This example is changed from [RFC3709] to use SHA-256 instead of SHA-1.

The values on the left are the ASN.1 tag (in hexadecimal) and the length (in decimal).
B.2. Issuer Organization Logotype Example

The following example displays a logotype certificate extension containing one issuer organization logotype using direct addressing. The issuer organization logotype image is of the type image/jpeg. The logotype image is referenced through one URI, and the image is hashed with SHA-256.

The values on the left are the ASN.1 tag (in hexadecimal) and the length (in decimal).
B.3. Embedded Image Example

The following example displays a logotype certificate extension containing one subject organization logotype using direct addressing. The subject organization logotype image uses image/svg+xml+gzip. The logotype image is embedded in the certificate extension with a "data:" URI, and the image is hashed by SHA-256. This technique produces a large certificate extension but offers reduced latency and improved privacy.

The values on the left are the ASN.1 tag (in hexadecimal) and the length (in decimal).
SEQUENCE {
 OBJECT IDENTIFIER sha-256 (2 16 840 1 101 3 4 2 1)
 OCTET STRING C5 AC 94 1A 0A 25 1F B3 16 6F 97 C5 52 40 9B 49
 9E 7B 92 61 5A B0 A2 6C 19 BF B9 D8 09 C5 D9 E7
 IA5String ''28tY29weS5zdmcApVbbbhs3EH3nV0y3Lw2Q9fK2LewHDROU
 B0zizBxW+RRLta2UFykypIW5utm71B2Uq9cu1LUktyLmFo
 PD8xkbfhtyPu/1uq5k17swa2spp+mV8vd2M2s2azbV5cmPnvX
 v16efX7WvZ31/L299e/vzTPtrt1/0RLrvu1dUref/7j+Ktd
 Xassy/9IYa6m6e77rjscDmecHlbDxDXd7zpu6t699vmaxo
 n084AREdRdt7gpdWDRSsz7+tpg2/bew/HeKi5WGOpKyaW82s8
 SmeWf13NyvMi66ubzzXk+xxH+9X4+HI9t0ssWL1y35S3ArPd
 7xtP+7uxx/2d+NiejevftTtZ8+nNavkJbjy048Lrb8dpvpxP8
 wtzuRnv87L1/+W+w8my9GcWfoPoFdbJvN44ylld8dp3Mn7c
 b3a5KONGCIAcCc+a8+ylo/FPfWLP/uN3dzqakhir5u5wfbn/j9a+
 Uzzi/maik6utA+aZ435ufqvZ82R3Q1t32Lw3pzQ71d/PpR
 pazSo2LKncCzaim8vQvSpog599iy3my0ga+e3H+84In
 jVPFD9awdhnrCFEWF386S1/PnvpnUa2Q8VxUEVXFbJ2UVFyC0g
 pUs+04GKB4V/k6CHyuhvhi1DVQF85aPDbmnrSxB74DANjg
 uweqNZLpWjUVTRQgpiEplR8ct1Wj+Iq8rCvZAArXeEewM
 JLqNAIF+gqnsODXgpp0eomJPCVhtCRycNARXg8AGi1q5Sr61U
 xlomBswjyDBE9e0vC6DCsereBjifXJ2SdsA66BP5dQ6m3xoP
 1LWHbNq+egAeAzyxNAdCQz+sDEMOhaGISkJdSJSgtWVM4M1
 r0Wp0GebEHHfLoXuCJhr4M5RJiBaiLkkfROUEyR1idQg8
 awhcZEnk+AMJLdp8FevQ9QzVS+K0WgL10Ioh1MVjo0eBE6RA
 18SRSpYsiiE/eFFKAm+MSI5NBFqso40FnorFw5hWHCDMNMQ1
 DR1cUieKdLsBiEhP6BgMK0xS5dAfYi3kWk2AitTAbTk
 p5hKi866kg0OryeEBR0VGCwajf8t9wqvUUM66LAb1i0Q8CB
 zCTCsn/DEhCbm++duQaiRl1qMkDhnnmtHA+r5npWlsJbCA
 LUKdSW5NAj43J+oAD5vpfamUzq1JRACmCWiHMq4HymykGkai
 jIPm5ps880UtzTajdsRaapZqo5lgFcJhWoyZwoE0Xqvy/tr
 fx2qhcqcz3zETL+s1811vH0Qzv1eOEVQPzcozeZv6g7j2h
 lC5q7mJFjY4A711cAmPnygq6zg3DC6s56fQ98RS7e1OlN0W8
 m66Mkc6y1LpPa7Q7UZ5I/R/m/dEwoJeP+L61I4dSiy1p4jd1k
 0a2zPQgn0z8Apahtj1Wtbzq9u+MqUyvJy16ly12Bx68bPF3u5S
 1232Qy4O4Dmrh4MryVqszI2Oc6uyY/o1oZbgoiKycHyCqhxh
 QsPQj/ne90MmKvYH1AeKE/AQmzrmaYUjHUhRjpJOW4breSaxZ
 /TVc32AAQKoagA1jwpHrVKBmiA5e+5dWMQu0ZMW1Fn/xxOQ
 wyHXY2MN56Wf6qZ24VhJAHMNQJ11AqJE8MjZJLhelloQ7AZW
 kisMdyW7tBsvLk\kq2G2NB3bwyaraerqFRLNKpH0U0HaqiFycvq
 6s35jpy1nWnrRzfZz5F91XdixidDHU/R0oAgn9q+G7TPeVU6HaN
 610VpUvL1SCWzZehwGAe1JFYoAk2jJ30FeJ5GPe1+3D1f3aJ
 78bbvmage50ykHUnVygqP6+EnTvQ/jUn3iadMHlQapsK278
 SwCBJUFlJnEmhu0ntBhtozqpsMik5AmRc0LbR52Ferdj
 ksaCQ73IuWlx6MVb6x6dWHLYGCAxWIUkKI0p9HfB3E1L
 jSdXb5oB5S5ts81L69yTPW51Wpqwosr51927aw6401+Yf
 wDria4WoQwAAA=='}
B.4. Embedded Certificate Image Example

The following example displays a logotype certificate extension containing one certificate image logotype using direct addressing. The certificate image logotype uses image/svg+xml+gzip. The logotype image is embedded in the certificate extension with a "data:" URI, and the image is hashed by SHA-256. This example contains the image from Appendix B of [RFC6170]; however, the media type used here is explicit about the use of GZIP compression [RFC1952].

The values on the left are the ASN.1 tag (in hexadecimal) and the length (in decimal).

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Tag</th>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 2902: SEQUENCE</td>
<td>06 8</td>
<td>04 2888</td>
<td>OBJECT IDENTIFIER logotype (1 3 6 1 5 5 7 1 12) OCTET STRING, encapsulates</td>
</tr>
<tr>
<td>30 2884: SEQUENCE</td>
<td>A3 2880:</td>
<td>30 2876:</td>
<td>SEQUENCE A3 2872: SEQUENCE 06 8: OBJECT IDENTIFIER '1 3 6 1 5 5 7 20 3'</td>
</tr>
<tr>
<td>30 2854: SEQUENCE</td>
<td>A0 2858:</td>
<td>30 2850:</td>
<td>SEQUENCE 30 2846: SEQUENCE 16 18: IA5String 'image/svg+xml+gzip'</td>
</tr>
<tr>
<td></td>
<td>30 49:</td>
<td></td>
<td>SEQUENCE 30 11: OBJECT IDENTIFIER sha-256 (2 16 840 1 101 3 4 2 1)</td>
</tr>
<tr>
<td></td>
<td>04 32:</td>
<td></td>
<td>OCTET STRING 83 14 B3 26 9B D3 8B 0B 2A E6 6E 42 74 E2 A7 57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7A 40 B7 E1 2E 53 42 44 CC 7C AE 14 68 1B 0E B6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>}</td>
</tr>
<tr>
<td>30 2771: SEQUENCE</td>
<td>16 2676:</td>
<td></td>
<td>IA5String ''</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'nRjbWfzn2URlbW8uc3ZnANVawW2/bOBZ+n19BqBigwdoS7xK9j'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'meapB0EWHQHzez2WZZoRltzMIQ5jvr995CSL7GIEmBC9d9i'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'ERSPQd85+05E83+9jhl0MuyiITPLh3iygfpLiKjje0v/66'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'1McFbzhVckpmnml50sd34b/TIsH6YoI+da11UySSJwkgqj2'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'1k41Q6CDBnYULMSSTes+quYDz1su1+6SuXkxYhSySpUo7QPK'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'/1kqcvx3SWlymu+auGy0whE0ig0vqV/LHSwjJdJG1GHQ9'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'14n0/sK1Mf4Wvctk7i6X7/sGEydaN5L/WeRT5UdKmSbLVWN'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'/oo2cqNCh1XyoKPN8Nsz8iqwVW8Bq1foF0VqP+P186m6AwqP'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'eISzn9goYzXYVxWIUpfWLCMwccGolpgy83n0wzGkbR4Gtef'</td>
</tr>
</tbody>
</table>
B.5. Full Certificate Example

The following example contains a certificate for Alice; it is essentially a renewal of the certificate that appears in [RFC9216]. Of course, the serial number and issue dates are different. In addition, Alice’s certificate now has a logotype certificate extension. The extension contains URLs for two community logotype images, both at fictional URLs. The extension also contains URLs for two subject organization logotype images, both at fictional URLs. An implementation would display at most three of these images, both of the community logotype images and one of the subject organization logotype images. Direct addressing is used for all of the images, and the images are hashed by SHA-256.

The following displays the logotype certificate extension from Alice’s certificate. The values on the left are the ASN.1 tag (in hexadecimal) and the length (in decimal).

```
MIIFpTCBII2gAwIBAgITN0EFee1i1f0Kploitw69Pgzpqx1zANBgkqhkiG9w0BAQFsADBVMQ0wCQYDVQQGEwJ5MQswCQYDVQQDDBFq
-----BEGIN CERTIFICATE-----
MIIFpTCCBI2gAwIBAgITN0EFee1i1f0Kploitw69Pgzpqx1zANBgkqhkiG9w0BAQFsADBVMQ0wCQYDVQQGEwJ5MQswCQYDVQQDDBFq
-----END CERTIFICATE-----
```

The following uses the logotype certificate extension from Alice's certificate. The values on the left are the ASN.1 tag (in hexadecimal) and the length (in decimal).
Appendix C. Changes since RFCs 3709 and 6170

This appendix summarizes the changes since [RFC3709]. The changes are:

- Combine RFCs 3709 and 6170 into one document, and encourage implementers to support the "data" URI scheme (data:...) that was originally specified in RFC 6170. Merging RFCs 3709 and 6170 led to many editorial changes throughout the document.
- Drop SHA-1 as the mandatory-to-implement hash algorithm, and encourage use of the one-way hash function that is employed by the certificate signature algorithm.
RFC 3709 required client applications to support both direct and indirect addressing. This requirement is changed to SHOULD support both direct and indirect addressing to allow implementations to be more privacy preserving.

- Update the reference for language tags to be RFC 5646 instead of the now obsolete RFC 3066.
- Update the reference for the URI Generic Syntax to be RFC 3986 instead of the now obsolete RFC 2396.
- Update the reference for the application/pdf media type to be RFC 8118 instead of the now obsolete RFC 3778.
- No longer require support for the FTP scheme (ftp://...) URI.
- Require support for the HTTP scheme (http://...) URI and the HTTPS scheme (https://...) URI.
- Provide syntax of the "data" URI scheme using modern ABNF.
- Require support for the compressed SVG image format with the image/svg+xml+gzip media type.
- Media types MUST follow the ABNF [RFC5234] that is provided in Section 8.3.1 of [RFC9110]. This change resolves Errata ID 2679.
- Remove the requirement that the LogotypeData file name have a file extension of ".LTD". This change resolves Errata ID 2325.
- Encourage, instead of requiring, each logotype to be represented by at least one image.
- Encourage the inclusion of text-based audio data suitable for processing by a text-to-speech software using the media type of "text/plain;charset=UTF-8".
- Encourage the use of dithering if an image needs to be scaled.
- Require that the logotype certificate extension not contain more than one certificate image logotype.
- Privacy-related topics that were previously discussed in the Security Considerations section are now covered in a separate Privacy Considerations section. Additional topics are covered in both sections.
- Provide ASN.1 modules for both the older syntax [OLD-ASN1] and the most recent ASN.1 syntax [NEW-ASN1].
- Provide additional references.
- Provide additional examples.
- Several editorial changes to improve clarity.
- The example in Appendix B.1 was changed to use SHA-256 instead of SHA-1.

Acknowledgments

- Acknowledgments from RFC 3709

This document is the result of contributions from many professionals. The authors appreciate contributions from all members of the IETF PKIX Working Group. We extend a special thanks to Al Arsenault, David Cross, Tim Polk, Russel Weiser, Terry Hayes, Alex Deacon, Andrew Hoag, Randy Sabett, Denis Pinkas, Magnus Nystrom, Ryan Hurst, and Phil Griffin for their efforts and support.
Russ Housley thanks the management at RSA Laboratories, especially Burt Kaliski, who supported the development of this specification. The vast majority of the work on this specification was done while Russ was employed at RSA Laboratories.

- Acknowledgments from RFC 6170

The authors recognize valuable contributions from members of the PKIX working group, the CA Browser Forum, and James Manger, for their review and sample data.

- Additional Acknowledgments

Combining RFCs 3709 and 6170 has produced an improved specification. The authors appreciate contributions from all members of the IETF LAMPS Working Group. We extend a special thanks to Alexey Melnikov for his guidance on media types. We extend a special thanks to Tim Geiser for his careful checking of the new examples in Appendices B.4 and B.5. We extend a special thanks to Corey Bonnell, Daniel Kahn Gillmor, Roman Danyliw, Paul Wouters, Paul Kyzivat, Shuping Peng, Sheng Jiang, Rob Wilton, Éric Vyncke, Donald Eastlake 3rd, and Dan Harkins for their careful review and helpful comments.

Authors' Addresses

Stefan Santesson
IDsec Solutions AB
Forskningsbyn Ideon
SE-223 70 Lund
Sweden
Email: sts@aaa-sec.com

Russ Housley
Vigil Security, LLC
516 Dranesville Road
Herndon, VA 20170
United States of America
Email: housley@vigilsec.com

Trevor Freeman
Amazon Web Services
1918 8th Ave
Seattle, WA 98101
United States of America
Email: ftrevor@amazon.com

Leonard Rosenthol
Adobe
345 Park Avenue
San Jose, CA 95110
United States of America
Email: lrosenth@adobe.com