Deprecation of the Internet Key Exchange Version 1 (IKEv1) Protocol and Obsoleted Algorithms

Abstract

Internet Key Exchange Version 1 (IKEv1) has been deprecated, and RFCs 2407, 2408, and 2409 have been moved to Historic status. This document updates RFCs 8221 and 8247 to reflect the usage guidelines of old algorithms that are associated with IKEv1 and are not specified or commonly implemented for IKEv2. This document further updates the IANA registries for IKEv2 "Transform Type Values" by adding a "Status" column where the deprecation status can be listed.

Status of This Memo

This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc9395.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction
2. Requirements Language
3. RFCs 2407, 2408, and 2409 Are Historic
4. IKEv1 Feature Equivalents for IKEv2
 4.1. IKEv2 Post-Quantum Support
 4.2. IKEv2 Labeled IPsec Support
 4.3. IKEv2 Group SA and Multicast Support
5. Deprecating Obsolete Algorithms
6. Security Considerations
7. IANA Considerations
8. References
 8.1. Normative References
 8.2. Informative References

Author's Address

1. **Introduction**

IKEv1 has been moved to Historic status. IKEv1 [RFC2409] and its related documents for the Internet Security Association and Key Management Protocol (ISAKMP) [RFC2408] and IPsec DOI [RFC2407] were obsoleted by IKEv2 [RFC4306] in December 2005. The latest version of IKEv2 at the time of writing was published in 2014 [RFC7296]. Since IKEv2 replaced IKEv1 over 15 years ago, IKEv2 has now seen wide deployment, and it provides a full replacement for all IKEv1 functionality. No new modifications or new algorithms have been accepted for IKEv1 for at least a decade. IKEv2 addresses various issues present in IKEv1, such as IKEv1 being vulnerable to amplification attacks.

Algorithm implementation requirements and usage guidelines for IKEv2 [RFC8247] and Encapsulating Security Payload (ESP) and Authentication Header (AH) [RFC8221] gives guidance to implementors but limits that guidance to avoid broken or weak algorithms. These two RFCs do not deprecate algorithms that have aged and are not in use. Instead, they leave these algorithms
in a state of "MAY be used" by not mentioning them. This document deprecates those
unmentioned algorithms that are no longer advised but for which there are no known attacks
resulting in their earlier deprecation.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

3. RFCs 2407, 2408, and 2409 Are Historic

As IKEv1 is deprecated, systems running IKEv1 should be upgraded and reconfigured to run
IKEv2. Systems that support IKEv1 but not IKEv2 are most likely also unsuitable candidates for
continued operation for the following reasons:

- IKEv1 development ceased over a decade ago, and no new work will happen. This poses the
risk of unmaintained code in an otherwise supported product, which can result in security
vulnerabilities.
- A number of IKEv1 systems have reached their End of Life and, therefore, will never be
patched by the vendor if a vulnerability is found.
- There are vendors that still provide updates for their equipment that supports IKEv1 and
IKEv2 but have “frozen” their IKEv1 implementation. Such users might not be aware that
they are running unmaintained code with its associated security risks.
- IKEv1 systems can be abused for packet amplification attacks, as documented in the Security
Bulletin [CVE-2016-5361].
- Great strides have been made in cryptography since IKEv1 development ceased. While some
modern cryptographic algorithms were added to IKEv1, interoperability concerns mean that
the default algorithms negotiated by IKEv1 will consist of dated or deprecated algorithms,
like AES-CBC, SHA1, and Diffie-Hellman groups 1 or 2. IKEv2 provides a state-of-the-art suite
of cryptographic algorithms that IKEv1 lacks.

IKEv2 is a more secure protocol than IKEv1. For example, IKEv2 offers more modern
cryptographic primitives, proper defense against denial-of-service attacks, improved
authentication via Extensible Authentication Protocol (EAP) methods, and password-
authenticated key exchange (PAKE) support. Also, IKEv2 is actively worked on with respect to
defending against quantum-computer attacks.

IKEv1-only systems should be upgraded or replaced by systems supporting IKEv2. IKEv2
implementations SHOULD NOT directly import IKEv1 configurations without updating the
cryptographic algorithms used.
4. **IKEv1 Feature Equivalents for IKEv2**

A few notable IKEv1 features are not present in the IKEv2 core specification [RFC7296] but are available for IKEv2 via an additional specification.

4.1. **IKEv2 Post-Quantum Support**

IKEv1 and its way of using Preshared Keys (PSKs) protects against quantum-computer-based attacks. IKEv2 updated its use of PSKs to improve the error reporting but at the expense of post-quantum security. If post-quantum security is required, these systems should be migrated to use IKEv2 Post-quantum Preshared Keys (PPKs) [RFC8784].

4.2. **IKEv2 Labeled IPsec Support**

Some IKEv1 implementations support Labeled IPsec, a method to negotiate an additional Security Context selector to the Security Policy Database (SPD), but this method was never standardized in IKEv1. Those IKEv1 systems that require Labeled IPsec should migrate to an IKEv2 system supporting Labeled IPsec as specified in [LABELED-IPSEC].

4.3. **IKEv2 Group SA and Multicast Support**

The Group Domain of Interpretation (GDOI) protocol [RFC6407], which is based on IKEv1, defines the support for Multicast Group SAs. For IKEv2, this work is currently in progress via [G-IKEV2].

5. **Deprecating Obsolete Algorithms**

This document deprecates the following algorithms:

- Encryption Algorithms: RC5, IDEA, CAST, Blowfish, and the unspecified 3IDEA, ENCR_DES_IV64, and ENCR_DES_IV32
- PRF Algorithms: the unspecified PRF_HMAC_TIGER
- Integrity Algorithms: HMAC-MD5-128
- Diffie-Hellman groups: none

6. **Security Considerations**

There are only security benefits if IKEv1 is deprecated and IKEv2 is used.

The deprecated algorithms have long been in disuse and are no longer actively deployed or researched; this presents an unknown security risk that is best avoided. Additionally, these algorithms not being supported in implementations simplifies those implementations and reduces the accidental use of deprecated algorithms through misconfiguration or downgrade attacks.
7. IANA Considerations

IANA has added the following line at the top of the Notes section of the "Internet Key Exchange (IKE) Attributes" and "Magic Numbers" for ISAKMP Protocol registries: "All registries listed below have been closed. See RFC 9395." In addition, this document has been added to the "Reference" column in these two registries, and their registration procedures have been changed to "Registry closed".

IANA has added a "Status" column to the following IKEv2 "Transform Type Values" registries:

- Transform Type 1 - Encryption Algorithm Transform IDs
- Transform Type 2 - Pseudorandom Function Transform IDs
- Transform Type 3 - Integrity Algorithm Transform IDs
- Transform Type 4 - Key Exchange Method Transform IDs

Also, the following entries have been marked as DEPRECATED:

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENCR DES_IV64</td>
<td>DEPRECATED (RFC 9395)</td>
</tr>
<tr>
<td>2</td>
<td>ENCR DES</td>
<td>DEPRECATED [RFC8247]</td>
</tr>
<tr>
<td>4</td>
<td>ENCR_RCS</td>
<td>DEPRECATED (RFC 9395)</td>
</tr>
<tr>
<td>5</td>
<td>ENCR IDEA</td>
<td>DEPRECATED (RFC 9395)</td>
</tr>
<tr>
<td>6</td>
<td>ENCR CAST</td>
<td>DEPRECATED (RFC 9395)</td>
</tr>
<tr>
<td>7</td>
<td>ENCR_BLOWFISH</td>
<td>DEPRECATED (RFC 9395)</td>
</tr>
<tr>
<td>8</td>
<td>ENCR_3IDEA</td>
<td>DEPRECATED (RFC 9395)</td>
</tr>
<tr>
<td>9</td>
<td>ENCR_DES_IV32</td>
<td>DEPRECATED (RFC 9395)</td>
</tr>
</tbody>
</table>

Table 1: Transform Type 1 - Encryption Algorithm Transform IDs

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PRF_HMAC_MD5</td>
<td>DEPRECATED [RFC8247]</td>
</tr>
<tr>
<td>3</td>
<td>PRF_HMAC_TIGER</td>
<td>DEPRECATED (RFC 9395)</td>
</tr>
</tbody>
</table>

Table 2: Transform Type 2 - Pseudorandom Function Transform IDs
8. References

8.1. Normative References

8.2. Informative References

Author's Address

Paul Wouters (EDITOR)
Aiven
Email: paul.wouters@aiven.io