RFC 9155
Deprecating MD5 and SHA-1 Signature Hashes in TLS 1.2 and DTLS 1.2

Abstract
The MD5 and SHA-1 hashing algorithms are increasingly vulnerable to attack, and this document deprecates their use in TLS 1.2 and DTLS 1.2 digital signatures. However, this document does not deprecate SHA-1 with Hashed Message Authentication Code (HMAC), as used in record protection. This document updates RFC 5246.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc9155.

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved.
1. Introduction

The usage of MD5 and SHA-1 for signature hashing in (D)TLS 1.2 is specified in [RFC5246]. MD5 and SHA-1 have been proven to be insecure, subject to collision attacks [Wang]. In 2011, [RFC6151] detailed the security considerations, including collision attacks for MD5. NIST formally deprecated use of SHA-1 in 2011 [NISTSP800-131A-R2] and disallowed its use for digital signatures at the end of 2013, based on both the attack described in [Wang] and the potential for brute-force attack. In 2016, researchers from the National Institute for Research in Digital Science and Technology (INRIA) identified a new class of transcript collision attacks on TLS (and other protocols) that relies on efficient collision-finding algorithms on the underlying hash constructions [Transcript-Collision]. Further, in 2017, researchers from Google and Centrum Wiskunde & Informatica (CWI) Amsterdam [SHA-1-Collision] proved SHA-1 collision attacks were practical. This document updates [RFC5246] in such a way that MD5 and SHA-1 must not be used.

Table of Contents

1. Introduction
 1.1. Requirements Language
2. Signature Algorithms
3. Certificate Request
4. Server Key Exchange
5. Certificate Verify
6. IANA Considerations
7. Security Considerations
8. References
 8.1. Normative References
 8.2. Informative References
Acknowledgements
Authors' Addresses
for digital signatures. However, this document does not deprecate SHA-1 with HMAC, as used in
record protection. Note that the CA/Browser Forum (CABF) has also deprecated use of SHA-1 for
use in certificate signatures [CABF].

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Signature Algorithms

Clients MUST include the signature_algorithms extension. Clients MUST NOT include MD5 and SHA-1 in this extension.

3. Certificate Request

Servers SHOULD NOT include MD5 and SHA-1 in CertificateRequest messages.

4. Server Key Exchange

Servers MUST NOT include MD5 and SHA-1 in ServerKeyExchange messages. If the client receives a ServerKeyExchange message indicating MD5 or SHA-1, then it MUST abort the connection with an illegal_parameter alert.

5. Certificate Verify

Clients MUST NOT include MD5 and SHA-1 in CertificateVerify messages. If a server receives a CertificateVerify message with MD5 or SHA-1, it MUST abort the connection with an illegal_parameter alert.

6. IANA Considerations

IANA has updated the "TLS SignatureScheme" registry by changing the recommended status of SHA-1-based signature schemes to "N" (not recommended), as defined by [RFC8447]. The following entries have been updated; other entries in the registry remain the same.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Recommended</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0201</td>
<td>rsa_pkcs1_sha1</td>
<td>N</td>
<td>[RFC8446] [RFC9155]</td>
</tr>
<tr>
<td>0x0203</td>
<td>ecdsa_sha1</td>
<td>N</td>
<td>[RFC8446] [RFC9155]</td>
</tr>
</tbody>
</table>

Table 1
IANA has also updated the reference for the "TLS SignatureAlgorithm" and "TLS HashAlgorithm" registries to refer to this document in addition to RFCs 5246 and 8447.

7. Security Considerations

Concerns with (D)TLS 1.2 implementations falling back to SHA-1 is an issue. This document updates the TLS 1.2 specification [RFC5246] to deprecate support for MD5 and SHA-1 for digital signatures. However, this document does not deprecate SHA-1 with HMAC, as used in record protection.

8. References

8.1. Normative References

8.2. Informative References

Acknowledgements

The authors would like to thank Hubert Kario for his help in writing the initial draft version of this document. We are also grateful to Daniel Migault, Martin Thomson, Sean Turner, Christopher Wood, and David Cooper for their feedback.

Authors' Addresses

Loganaden Velvindron
cyberstorm.mu
Rose Hill
Mauritius
Phone: +230 59762817
Email: logan@cyberstorm.mu

Kathleen Moriarty
Center for Internet Security
East Greenbush, NY
United States of America
Email: Kathleen.Moriarty.ietf@gmail.com

Alessandro Ghedini
Cloudflare Inc.
Email: alessandro@cloudflare.com