RFC 9128

YANG Data Model for Protocol Independent Multicast (PIM)

Abstract

This document defines a YANG data model that can be used to configure and manage devices supporting Protocol Independent Multicast (PIM). The model covers the PIM protocol configuration, operational state, and event notifications data.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc9128.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions
Table of Contents

1. Introduction
 1.1. Terminology
 1.2. Tree Diagrams
 1.3. Prefixes in Data Node Names

2. Design of Data Model
 2.1. Scope of Model
 2.2. Optional Capabilities
 2.3. Datastore Applicability
 2.4. Module and Hierarchy Organization
 2.5. Position of Address Family in Hierarchy

3. Module Structure
 3.1. PIM Base Module
 3.1.1. High-Level Structure
 3.1.2. Global Data
 3.1.3. Per-Address-Family Data
 3.1.4. PIM Interface Modeling
 3.1.5. Neighbor Modeling
 3.1.6. Notifications
 3.2. PIM RP Module
 3.2.1. Static RPs
 3.2.2. BSRs
 3.2.3. RP State Data
 3.2.4. RP-to-Group Mappings
 3.2.5. Notifications
 3.3. PIM-SM Module
 3.4. PIM-DM Module
3.5. BIDIR-PIM Module

4. Complete Tree Structure
 4.1. PIM Base Module
 4.2. PIM RP Module
 4.3. PIM-SM Module
 4.4. PIM-DM Module
 4.5. BIDIR-PIM Module

5. Relationship to the PIM-STD-MIB
 5.1. pimInterfaceTable
 5.2. pimNeighborTable
 5.3. pimStarGTable
 5.4. pimSGTable
 5.5. pimSGRptTable
 5.6. pimBidirDFElectionTable
 5.7. pimStaticRPTable
 5.8. pimAnycastRPSetTable
 5.9. pimGroupMappingTable

6. PIM YANG Modules
 6.1. PIM Base Module
 6.2. PIM RP Module
 6.3. PIM-SM Module
 6.4. PIM-DM Module
 6.5. BIDIR-PIM Module

7. Security Considerations

8. IANA Considerations

9. References
 9.1. Normative References
 9.2. Informative References

Appendix A. Data Tree Example

Acknowledgments
1. Introduction

YANG [RFC7950] is a data modeling language that was introduced to model the configuration and operational state of a device managed using network management protocols such as the Network Configuration Protocol (NETCONF) [RFC6241] or RESTCONF [RFC8040]. YANG is now also being used as a component of other management interfaces, such as command-line interfaces (CLIs).

This document defines a YANG data model that can be used to configure and manage devices supporting Protocol Independent Multicast (PIM). This model supports the core PIM protocol, as well as many other features; see Section 2.1. Non-core features are defined as optional in the provided data model.

1.1. Terminology

The terminology for describing YANG data models is found in [RFC7950].

The following abbreviations are used in this document and the defined model:

ASM: Any-Source Multicast service model [RFC3569] [RFC4607]
BFD: Bidirectional Forwarding Detection [RFC5880]
BIDIR-PIM: Protocol Independent Multicast - Bidirectional Mode [RFC5015]
BSR: Bootstrap Router [RFC5059]
DF: Designated Forwarder [RFC5015]
DR: Designated Router [RFC7761]
IGMP: Internet Group Management Protocol [RFC3376]
MLD: Multicast Listener Discovery [RFC3810]
mLDP: Multipoint extensions for LDP [RFC6388]
MRIB: Multicast Routing Information Base [RFC3973] [RFC5015] [RFC7761]
MSDP: Multicast Source Discovery Protocol [RFC3618]
mVPN: Multicast VPN
PIM: Protocol Independent Multicast [RFC3973] [RFC5015] [RFC7761]
PIM-DM: Protocol Independent Multicast - Dense Mode [RFC3973]
PIM-SM: Protocol Independent Multicast - Sparse Mode [RFC7761]
RP: Rendezvous Point [RFC7761]
RPA: Rendezvous Point Address [RFC5015]
RPF: Reverse Path Forwarding [RFC3973] [RFC5015] [RFC7761]
RPT: Rendezvous Point Tree [RFC7761]
SPT: Shortest Path Tree [RFC7761]
SSM: Source-Specific Multicast service model [RFC3569] [RFC4607]
VRF: Virtual Routing and Forwarding

1.2. Tree Diagrams

Tree diagrams used in this document follow the notation defined in [RFC8340].

In addition, the following notation is used as a placeholder at the location of the name of a tree node, to represent a section of nodes:

<summary description of a section of nodes>

1.3. Prefixes in Data Node Names

In this document, names of data nodes, actions, and other data model objects are often used without a prefix, as long as the context clearly indicates the YANG module in which each name is defined. Otherwise, names are prefixed using the standard prefix associated with the corresponding YANG module, as shown in Table 1.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>YANG Module</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>yang</td>
<td>ietf-yang-types</td>
<td>[RFC6991]</td>
</tr>
<tr>
<td>inet</td>
<td>ietf-inet-types</td>
<td>[RFC6991]</td>
</tr>
<tr>
<td>if</td>
<td>ietf-interfaces</td>
<td>[RFC8343]</td>
</tr>
<tr>
<td>rt</td>
<td>ietf-routing</td>
<td>[RFC8349]</td>
</tr>
<tr>
<td>rt-types</td>
<td>ietf-routing-types</td>
<td>[RFC8294]</td>
</tr>
<tr>
<td>bfd-types</td>
<td>ietf-bfd-types</td>
<td>[RFC9314]</td>
</tr>
</tbody>
</table>

Table 1: Prefixes and Corresponding YANG Modules
2. Design of Data Model

2.1. Scope of Model

The model covers PIM Sparse Mode [RFC7761] (including the Source-Specific subset [RFC3569] [RFC4607]), Dense Mode [RFC3973], and Bidirectional PIM [RFC5015].

The PIM extensions represented in the model include BSRs [RFC5059] and Anycast-RPs [RFC4610].

The data model can be used to configure and manage these protocol features. The operational state data and statistics can be retrieved by this model. The protocol-specific notifications are also defined in the model.

This model does not cover other multicast protocols such as IGMP/MLD, MSDP, mVPN, or mLDP in-band signaling. It does not cover any configuration required to generate the MRIB. These will be specified in separate documents.

2.2. Optional Capabilities

This model is designed to represent the capabilities of devices supporting PIM with various specifications, including some with basic subsets of the PIM protocol. The main design goals of this document are that any major currently existing implementation may be said to support the base model and that the configuration of all implementations meeting the specification is easy to express through some combination of the features in the base model and simple vendor augmentations.

There is also value in widely supported features being standardized, to save work for individual vendors, and so that mapping between different vendors' configurations is not needlessly complicated. Therefore, these modules declare a number of features representing capabilities that not all deployed devices support.

The extensive use of feature declarations should also substantially simplify the capability negotiation process for a vendor's PIM implementation.

On the other hand, operational state parameters are not so widely designated as features, as there are many cases where the defaulting of an operational state parameter would not cause any harm to the system, and it is much more likely that an implementation without intrinsic support for a piece of operational state would be able to derive a suitable value for a state variable that is not intrinsically supported.

For the same reason, wide constant ranges (for example, timer maxima and minima) are used in the model. It is expected that vendors will augment the model with any specific extensions and restrictions needed to adapt it to their vendor-specific implementations.
2.3. Datastore Applicability

This model conforms to the Network Management Datastore Architecture (NMDA) [RFC8342]. The operational state data is combined with the associated configuration data in the same hierarchy [RFC8407].

2.4. Module and Hierarchy Organization

This model defines several separate modules for modeling PIM configuration. Again, this separation makes it easier to express the specific capabilities of a PIM device. The module organization, along with the usage of the YANG extensible features such as identity, allows the model to be easily augmented for new capabilities.

The hierarchy of PIM configuration is designed so that objects that are only relevant for one situation or feature are collected in a container for that feature. For example, a configuration for PIM-SM that is not relevant for an SSM-only implementation is collected in an ASM container.

Where fields are not genuinely essential to protocol operation, they are marked as optional. Some fields are essential but have a default specified, so they need not be explicitly configured.

This module structure also applies, where applicable, to the operational state and notifications of the model.

2.5. Position of Address Family in Hierarchy

This document contains "address-family" as a node in the hierarchy multiple times: under both the interface list and the PIM instance.

The reasoning for this is to make it easier for implementations in which configuration options are not supported for specific address families.

For these implementations, the restriction that interface configuration must be address-family independent may be expressed either (1) as a vendor augmentation of an address-family-independent parameter above the address-family level or (2) by a constraint on the base model objects of a form similar to the following:
3. Module Structure

3.1. PIM Base Module

The PIM base module defines the base framework not specific to any PIM mode and is imported by the other modules. The base module by itself does not provide sufficient data for any PIM mode to operate. Other mode-specific and feature-specific modules need to be implemented in addition to this module, depending on the feature set required by the implementation.

This model augments the core routing data model “ietf-routing” specified in [RFC8349]. The PIM base model augments “/rt:routing/rt:control-plane-protocols” as opposed to augmenting “/rt:routing/rt:control-plane-protocols/rt:control-plane-protocol”, as the latter would allow multiple protocol instances, while the PIM protocol is designed to be enabled or disabled as a single protocol instance on a network instance or a logical network element.

3.1.1. High-Level Structure

The high-level structure of the model is shown below:

```yaml
+ "pim-base:address-family" {

deviate add {
  must "'(address-family = 'rt:ipv4' and dr-priority = "
  + "../address-family[address-family = 'rt:ipv6']/" 
  + "dr-priority) or "
  + "'(address-family = 'rt:ipv6' and dr-priority = "
  + "../address-family[address-family = 'rt:ipv4']/" 
  + "dr-priority)" {
    error-message
      "Error: The IPv6 DR priority must match the "
    + "IPv4 DR priority.";
    error-app-tag "dr-priority-mismatch";
  }
}
```
The presence of the top-level container "pim" enables the PIM protocols.

3.1.2. Global Data

The global configuration data and operational state data cover support for graceful restart in the PIM base model. Additional features can be added by augmentation if required by an implementation.

3.1.3. Per-Address-Family Data

Support for per-address-family data is shown below:

```yml
module: ietf-pim-base
   augment /rt:routing/rt:control-plane-protocols:
     +--rw pim!
       +--rw <global configuration>
       +--ro <global operational state>
       +--rw address-family* [address-family]
         |  +--rw address-family identityref
         |  +--rw <per-address-family configuration>
         |  +--ro <per-address-family operational state>
         +--rw interfaces
           +--rw interface* [name]
             +--rw name if:interface-ref
             +--rw address-family* [address-family]
               +--rw address-family identityref
               +--rw <per interface configuration>
               +--ro <per interface operational state>
               +--ro neighbors
                 +--ro ipv4-neighbor* [address]
                   |  +--ro address inet:ipv4-address
                   |  +--ro <IPv4 per-neighbor operational state>
                   +--ro ipv6-neighbor* [address]
                     +--ro address inet:ipv6-address
                     +--ro <IPv4 per-neighbor operational state>
```
This is the location that most of the PIM RP module (ietf-pim-rp) augments. Each of the mode-specific modules also augments this schema tree.

3.1.4. PIM Interface Modeling

The configuration data and operational state data of PIM interfaces are modeled as shown below:

```yang
++--rw pim!
  |  +--rw address-family* [address-family]
  |     |  +--rw address-family        identityref
  |     |  +--rw graceful-restart
  |     |     ... 
  |     |  +--ro statistics
  |     |     |  +--ro discontinuity-time? yang:date-and-time
  |     |     |  +--ro error
  |     |     |     |  +--ro assert? yang:counter32
  |     |     ... 
  |     |  +--ro queue
  |     |     |  +--ro size? uint32
  |     |     |  +--ro overflow? yang:counter32
  |     |     |  +--ro received
  |     |     |     |  +--ro assert? yang:counter32
  |     |     ... 
  |     |  +--ro topology-tree-info
  |     |     |  +--ro ipv4-route* [group source-address is-rpt]
  |     |     |     |  +--ro group
  |     |     |     |     |  rt-types:ipv4-multicast-group-address
  |     |     |     |     |  +--ro source-address
  |     |     |     |     |     |  rt-types:ipv4-multicast-source-address
  |     |     |     |     |  +--ro is-rpt boolean
  |     |     |     |     |  +--ro ipv6-route* [group source-address is-rpt]
  |     |     |     |     |     |  +--ro group
  |     |     |     |     |     |     |  rt-types:ipv6-multicast-group-address
  |     |     |     |     |     |     |  +--ro source-address
  |     |     |     |     |     |     |     |  rt-types:ipv6-multicast-source-address
  |     |     |     |     |     |     |  +--ro is-rpt boolean
  |     |     |     |     |     ... 
  |     |     |     |     |  +--ro incoming-interface? if:interface-ref
  |     |     |     ... 
  |     |     |  +--ro outgoing-interface* [name]
  |     |     |     |  +--ro name if:interface-ref
  |     |     |     |  +--ro expiration? rt-types:timer-value-seconds16
  |     |     |     |  +--ro up-time? rt-types:timeticks64
  |     |     |     |  +--ro jp-state? enumeration
```
Support for BFD client configuration is achieved by using a grouping provided by an external module, “ietf-bfd-types”, as defined in [RFC9314].

3.1.5. Neighbor Modeling
For each PIM interface, there can be a list of neighbors that contains operational state data for each neighbor. To model such data, the following structure is specified:

```
+---rw pim!
   +---rw interfaces
      +---rw interface* [name]
         +---rw name    if:interface-ref
         +---rw address-family* [address-family]
            +---rw address-family identityref
            +---rw bfd {bfd}?
               ...
            +---rw dr-priority?            uint32 {intf-dr-priority}?
            +---rw hello-interval?        rt-types:timer-value-seconds16
               (intf-hello-interval)?
               |   +---rw (hello-holdtime-or-multiplier)?
               |       |   +---:(holdtime) {intf-hello-holdtime}?
               |       |   |   +---rw hello-holdtime?
               |       |   |   |   rt-types:timer-value-seconds16
               |       |   |   +---:(multiplier) {intf-hello-multiplier}?
               |       |   |       +---rw hello-multiplier?
               |       |   |       |   rt-types:timer-multiplier
               |       +---rw jp-interval?         rt-types:timer-value-seconds16
               |       |   (intf-jp-interval)?
               |       +---rw (jp-holdtime-or-multiplier)?
               |       |   +---:(holdtime) {intf-jp-holdtime}?
               |       |   |   +---rw jp-holdtime?
               |       |   |   |   rt-types:timer-value-seconds16
               |       |   |   +---:(multiplier) {intf-jp-multiplier}?
               |       |   |       +---rw jp-multiplier?
               |       |   |       |   rt-types:timer-multiplier
               +---rw override-interval?       uint16
               |   (intf-override-interval)?
               +---rw propagation-delay?       uint16
               |   (intf-propagation-delay)?
               +---ro oper-status?            enumeration
               +---ro gen-id?                 uint32
               +---ro hello-expiration?       rt-types:timer-value-seconds16
               +---ro ipv4
                  |   +---ro address*            inet:ipv4-address
                  +---ro dr-address?          inet:ipv4-address
               +---ro ipv6
                  |   +---ro address*            inet:ipv6-address
                  +---ro dr-address?          inet:ipv6-address
```
3.1.6. Notifications

The PIM base module also defines the notifications for PIM interface and neighbor events, as shown below:

```
---rw pim!
  +---rw interfaces
    +---rw interface* [name]
      +---rw address-family* [address-family]
        +---ro neighbors
          +---ro ipv4-neighbor* [address]
            |  +---ro address inet:ipv4-address
            |  +---ro bfd-status? enumeration
            |  +---ro expiration? rt-types:timer-value-seconds16
            |  +---ro dr-priority? uint32
            |  +---ro gen-id? uint32
            |  +---ro lan-prune-delay
            |      |  +---ro present? boolean
            |      |  +---ro override-interval? uint16
            |      |  +---ro propagation-delay? uint16
            |      |  +---ro t-bit? boolean
            |      +---ro up-time? rt-types:timeticks64
          +---ro ipv6-neighbor* [address]
            +---ro address inet:ipv6-address
            +---ro bfd-status? enumeration
            +---ro expiration? rt-types:timer-value-seconds16
            +---ro dr-priority? uint32
            +---ro gen-id? uint32
            +---ro lan-prune-delay
            |  +---ro present? boolean
            |  +---ro override-interval? uint16
            |  +---ro propagation-delay? uint16
            |  +---ro t-bit? boolean
            +---ro up-time? rt-types:timeticks64
```

```
notifications:
  +---n pim-neighbor-event
    |  +---ro event-type? neighbor-event-type
    |  +---ro interface-ref? leafref
    |  +---ro interface-af-ref? leafref
    |  +---ro neighbor-ipv4-ref? leafref
    |  +---ro neighbor-ipv6-ref? leafref
    |  +---ro up-time? rt-types:timeticks64
  +---n pim-interface-event
    +---ro event-type? interface-event-type
    +---ro interface-ref? leafref
    +---ro ipv4
    |  +---ro address* inet:ipv4-address
    |  +---ro dr-address? inet:ipv4-address
    +---ro ipv6
    |  +---ro address* inet:ipv6-address
    |  +---ro dr-address? inet:ipv6-address
```
3.2. PIM RP Module

The PIM RP module augments the PIM base module to define the configuration and operational state information scoped to RP-related features:

```
module: ietf-pim-rp
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
/pim-base:address-family:
    +--rw rp
        +--rw static-rp
        ...
        +--rw bsr {bsr}?
        ...
        +--ro rp-list
        ...
        +--ro rp-mappings
        ...
```

This module is shared by PIM-SM and BIDIR-PIM mode but is not shared by PIM-DM. The PIM-SM module and the BIDIR-PIM module augment this module to cover mode-specific data.

The following sections describe the features and capabilities covered in this module.

3.2.1. Static RPs

Static RPs can be configured by using the following portion of the module:

```
+--rw rp
    +--rw static-rp
        | +--rw ipv4-rp* [rp-address]
        |     +--rw rp-address inet:ipv4-address
        | +--rw ipv6-rp* [rp-address]
        |     +--rw rp-address inet:ipv6-address
```

3.2.2. BSRs

Support for BSRs includes both configuration data and operational state data, as shown below:
3.2.3. RP State Data

This portion of the model provides the operational state information for all RPs on the router, including the statically configured RPs and the BSR-elected RPs.
3.2.4. RP-to-Group Mappings

The operational state data of the mappings between RPs and multicast groups is modeled as follows:

```
+++rw rp
  +++ro rp-list
    | +++ro ipv4-rp* [rp-address mode]
    |    | +++ro rp-address inet:ipv4-address
    |    | +++ro mode identityref
    |    | +++ro info-source-address? inet:ipv4-address
    |    | +++ro info-source-type? identityref
    |    | +++ro up-time? rt-types:timeticks64
    |    | +++ro expiration? rt-types:timer-value-seconds16
    | +++ro ipv6-rp* [rp-address mode]
    |    | +++ro rp-address inet:ipv6-address
    |    | +++ro mode identityref
    |    | +++ro info-source-address? inet:ipv6-address
    |    | +++ro info-source-type? identityref
    |    | +++ro up-time? rt-types:timeticks64
    |    | +++ro expiration? rt-types:timer-value-seconds16
```

3.2.5. Notifications

The PIM RP module also defines the notifications for RP-related events, as shown below:

```
notifications:
  +++n pim-rp-event
    | +++ro event-type? rp-event-type
    | +++ro instance-af-ref? leafref
    | +++ro group? rt-types:ip-multicast-group-address
    | +++ro rp-address? inet:ip-address
    | +++ro is-rpt? boolean
    | +++ro mode? pim-base:pim-mode
    | +++ro message-origin? inet:ip-address
```
3.3. PIM-SM Module

The PIM-SM module covers Sparse Mode modeling, including PIM Any-Source Multicast (PIM-ASM) and PIM Source-Specific Multicast (PIM-SSM). This module has dependencies on the PIM base module and the PIM RP module, both of which are augmented by this module.

The augmentation to the "address-family" branch of the PIM base module is shown below:

```ysep
module: ietf-pim-sm
  augment /rt:routing/rt:control-plane-protocols/pim-base:pim
  /pim-base:address-family:
    +--rw sm
      +--rw asm
        +--rw anycast-rp!
          +--rw ipv4-anycast-rp* [anycast-address rp-address]
          +--rw anycast-address inet:ipv4-address
          +--rw rp-address inet:ipv4-address
          +--rw ipv6-anycast-rp* [anycast-address rp-address]
          +--rw anycast-address inet:ipv6-address
          +--rw rp-address inet:ipv6-address
        +--rw spt-switch!
          +--rw infinity! {spt-switch-infinity}?
          +--rw policy-name? string {spt-switch-policy}?
      +--rw ssm!
        +--rw range-policy? string
```

To support PIM-SM on an interface, this module augments the "interface" branch of the PIM base module, as follows:

```ysep
module: ietf-pim-sm
  augment /rt:routing/rt:control-plane-protocols/pim-base:pim
  /pim-base:interfaces/pim-base:interface/pim-base:address-family:
    +--rw sm!
      +--rw passive? empty
```

This module also augments the PIM RP module to allow an RP to be configured in PIM-SM:

```ysep
module: ietf-pim-sm
  augment /rt:routing/rt:control-plane-protocols/pim-base:pim
  /pim-base:address-family/pim-rp:rp/pim-rp:static-rp/pim-rp:ipv4-rp:
    +--rw sm!
      +--rw policy-name? string
      +--rw override? boolean {static-rp-override}?
  augment /rt:routing/rt:control-plane-protocols/pim-base:pim
  /pim-base:address-family/pim-rp:rp/pim-rp:static-rp/pim-rp:ipv6-rp:
    +--rw sm!
      +--rw policy-name? string
      +--rw override? boolean {static-rp-override}?
```

Liu, et al. Standards Track Page 16
3.4. PIM-DM Module

The PIM-DM module covers Dense Mode modeling. This module augments the PIM base module, but it has no dependency on the PIM RP module.

```Yang
module: ietf-pim-dm
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
    /pim-base:address-family:
        +++-rw dm!
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
    /pim-base:interfaces/pim-base:interface
        /pim-base:address-family:
            +++-rw dm!
```

3.5. BIDIR-PIM Module

The BIDIR-PIM module covers Bidirectional PIM modeling. Like PIM-SM, this module augments both the PIM base module and the PIM RP module.

The augmentations to the PIM base module, on the “address-family”, “interface”, and “neighbor” branches, are as follows:

```Yang
module: ietf-pim-bidir
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
    /pim-base:address-family:
        +++-rw bidir!
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
    /pim-base:interfaces/pim-base:interface/pim-base:address-family:
        +++-rw bidir!
        +++-rw df-election {intf-df-election}?
        +++-rw offer-interval?     uint16
        +++-rw backoff-interval?   uint16
        +++-rw offer-multiplier?   uint8
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
    /pim-base:interfaces/pim-base:interface/pim-base:address-family
        /pim-base:neighbors/pim-base:ipv4-neighbor:
            +++-ro bidir-capable?   boolean
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
    /pim-base:interfaces/pim-base:interface/pim-base:address-family
        /pim-base:neighbors/pim-base:ipv6-neighbor:
            +++-ro bidir-capable?   boolean
```

This module also augments the PIM RP module to extend the capabilities of RPs for BIDIR-PIM mode:
4. Complete Tree Structure

4.1. PIM Base Module

```yang
module: ietf-pim-bidir
 augment /rt:routing/rt:control-plane-protocols/pim-base:pim
 /pim-base:address-family/pim-rp:rp/pim-rp:static-rp/pim-rp:ipv4-rp:
  +++--rw bidir!
   +++--rw policy-name?  string
   +++--rw override? boolean {static-rp-override}?

 augment /rt:routing/rt:control-plane-protocols/pim-base:pim
 /pim-base:address-family/pim-rp:rp/pim-rp:static-rp/pim-rp:ipv6-rp:
  +++--rw bidir!
   +++--rw policy-name?  string
   +++--rw override? boolean {static-rp-override}?

 augment /rt:routing/rt:control-plane-protocols/pim-base:pim
 /pim-base:address-family/pim-rp:rp:
  ++++ro bidir
   ++++ro df-election
   |  ++++ro ipv4-rp* [rp-address]
   |  |  ++++ro rp-address  inet:ipv4-address
   |  ++++ro ipv6-rp* [rp-address]
   |  ++++ro rp-address  inet:ipv6-address
   ++++ro interface-df-election
   |  ++++ro ipv4-rp* [rp-address interface-name]
   |  |  ++++ro rp-address  inet:ipv4-address
   |  |  ++++ro interface-name  if:interface-ref
   |  |  ++++ro df-address?  inet:ipv4-address
   |  |  ++++ro interface-state?  identityref
   |  |  ++++ro up-time?  rt-types:timeticks64
   |  |  ++++ro winner-metric?  uint32
   |  |  ++++ro winner-metric-preference?  uint32
   |  ++++ro ipv6-rp* [rp-address interface-name]
   |  |  ++++ro rp-address  inet:ipv6-address
   |  |  ++++ro interface-name  if:interface-ref
   |  |  ++++ro df-address?  inet:ipv6-address
   |  |  ++++ro interface-state?  identityref
   |  |  ++++ro up-time?  rt-types:timeticks64
   |  |  ++++ro winner-metric?  uint32
   |  |  ++++ro winner-metric-preference?  uint32
```

```yang
module: ietf-pim-base
 augment /rt:routing/rt:control-plane-protocols:
  +++--rw pim!
   |  +++--rw graceful-restart
   |  |  +++--rw enabled?  boolean
   |  |  +++--rw duration?  uint16
   +++--rw address-family* [address-family]
   |  +++--rw address-family  identityref
   |  +++--rw graceful-restart
   |  |  +++--rw enabled?  boolean
   |  |  +++--rw duration?  uint16
```

| +--ro up-time? rt-types:timeticks64
| +--ro outgoing-interface* [name]
| +--ro name if:interface-ref
| +--ro expiration? rt-types:timer-value-seconds16
| +--ro up-time? rt-types:timeticks64
| +--ro jp-state? enumeration
| +--ro ipv6-route* [group source-address is-rpt]
| +--ro group
| rt-types:ipv6-multicast-group-address
| +--ro source-address
| rt-types:ipv6-multicast-source-address
| +--ro is-rpt boolean
| +--ro expiration?
| rt-types:timer-value-seconds16
| +--ro incoming-interface? if:interface-ref
| +--ro is-spt? boolean
| +--ro mode? identityref
| +--ro msdp-learned? boolean
| +--ro rp-address? inet:ip-address
| +--ro rpf-neighbor? inet:ip-address
| +--ro up-time? rt-types:timeticks64
| +--ro outgoing-interface* [name]
| +--ro name if:interface-ref
| +--ro expiration? rt-types:timer-value-seconds16
| +--ro up-time? rt-types:timeticks64
| +--ro jp-state? enumeration
| +--rw interfaces
| +--rw interface* [name]
| +--rw address-family* [address-family]
| +--rw address-family identityref
| +--rw bfd {bfd}?
| +--rw enabled? boolean
| +--rw local-multiplier? multiplier
| +--rw (interval-config-type)?
| +--:(tx-rx-intervals)
| | +--rw desired-min-tx-interval? uint32
| | +--rw required-min-rx-interval? uint32
| +--:(single-interval)
| {single-minimum-interval}?
| +--rw min-interval? uint32
| +--rw dr-priority? uint32
| {intf-dr-priority}?
| +--rw hello-interval?
| rt-types:timer-value-seconds16
| {intf-hello-interval}?
| +--rw (hello-holdtime-or-multiplier)?
| +--:(holdtime) {intf-hello-holdtime}?
| | +--rw hello-holdtime?
| | rt-types:timer-value-seconds16
| | +--:(multiplier) {intf-hello-multiplier}?
| | +--rw hello-multiplier?
| | rt-types:timer-multiplier
| +--rw jp-interval?
| rt-types:timer-value-seconds16
| {intf-jp-interval}?
| +--rw (jp-holdtime-or-multiplier)?
| | +--:(holdtime) {intf-jp-holdtime}?
| | ++--rw jp-holdtime?
| | rt-types:timer-value-seconds16
| | ++--:(multiplier) {intf-jp-multiplier}?
| | | ++--rw jp-multiplier?
| | | rt-types:timer-multiplier
| | ++--rw override-interval? uint16
| | | {intf-override-interval}?
| | ++--rw propagation-delay? uint16
| | | {intf-propagation-delay}?
| | ++--ro oper-status? enumeration
| | ++--ro gen-id? uint32
| | ++--ro hello-expiration?
| | | rt-types:timer-value-seconds16
| | ++--ro ipv4
| | | ++--ro address* inet:ipv4-address
| | | ++--ro dr-address? inet:ipv4-address
| | ++--ro ipv6
| | | ++--ro address* inet:ipv6-address
| | | ++--ro dr-address? inet:ipv6-address
| | ++--ro neighbors
| | | ++--ro ipv4-neighbor* [address]
| | | | ++--ro address inet:ipv4-address
| | | | ++--ro bfd-state? bfd-types:state
| | | | ++--ro expiration?
| | | | | rt-types:timer-value-seconds16
| | | | ++--ro dr-priority? uint32
| | | | ++--ro gen-id? uint32
| | | | ++--ro lan-prune-delay
| | | | | ++--ro present? boolean
| | | | | ++--ro override-interval? uint16
| | | | | ++--ro propagation-delay? uint16
| | | | | ++--ro t-bit? boolean
| | | | ++--ro up-time? rt-types:timeticks64
| | ++--ro ipv6-neighbor* [address]
| | | ++--ro address inet:ipv6-address
| | | ++--ro bfd-state? bfd-types:state
| | | ++--ro expiration?
| | | | rt-types:timer-value-seconds16
| | | ++--ro dr-priority? uint32
| | | ++--ro gen-id? uint32
| | | ++--ro lan-prune-delay
| | | | ++--ro present? boolean
| | | | ++--ro override-interval? uint16
| | | | ++--ro propagation-delay? uint16
| | | | ++--ro t-bit? boolean
| | | ++--ro up-time? rt-types:timeticks64

notifications:
| | | |--n pim-neighbor-event
| | | | | ++--ro event-type?
| | | | | neighbor-event-type
| | | | | | ++--ro interface-ref? leafref
| | | | | | ++--ro interface-af-ref? leafref
| | | | | | ++--ro neighbor-ipv4-ref? leafref
| | | | | | ++--ro neighbor-ipv6-ref? leafref
| | | | | | | ++--ro up-time? rt-types:timeticks64
| | | |--n pim-interface-event
| | | | | ++--ro event-type? interface-event-type
| | | | | | ++--ro interface-ref? leafref
4.2. PIM RP Module

module: ietf-pim-rp
 augment /rt:routing/rt:control-plane-protocols/pim-base:pim
 /pim-base:address-family:
 +++-rw rp
 +++-rw static-rp
 +++-rw ipv4-rp* [rp-address]
 | +++-rw rp-address inet:ipv4-address
 | +++-rw rp-address inet:ipv4-address
 +++-rw ipv6-rp* [rp-address]
 | +++-rw rp-address inet:ipv6-address
 | +++-rw rp-address inet:ipv6-address
 +++-rw bsr {bsr}?
 +++-rw bsr-candidate!
 | +++-rw (interface-or-address)?
 | | +++-:(interface) {candidate-interface}?
 | | | +++-rw interface if:interface-ref
 | | | +++-:(ipv4-address) {candidate-ipv4}?
 | | | +++-rw ipv4-address inet:ipv4-address
 | | | +++-:(ipv6-address) {candidate-ipv6}?
 | | | +++-rw ipv6-address inet:ipv6-address
 | +++-rw hash-mask-length uint8
 | +++-rw priority? uint8
 | +++-rw rp-candidate
 | | +++-rw interface* [name] {candidate-interface}?
 | | | +++-rw name if:interface-ref
 | | | +++-rw policy-name? string
 | | | +++-rw mode? identityref
 | | | +++-rw ipv4-address* [address] {candidate-ipv4}?
 | | | | +++-rw address inet:ipv4-address
 | | | | +++-rw policy-name? string
 | | | | +++-rw mode? identityref
 | | | | +++-rw ipv6-address* [address] {candidate-ipv6}?
 | | | | | +++-rw address inet:ipv6-address
 | | | | | +++-rw policy-name? string
 | | | | | +++-rw mode? identityref
 +++-ro bsr
 | +++-ro address? inet:ip-address
 | +++-ro hash-mask-length? uint8
 | +++-ro priority? uint8
 | +++-ro up-time? rt-types:timeticks64
 | +++-ro (election-state)? {bsr-election-state}?
 | | +++-:(candidate)
 | | | +++-ro candidate-bsr-state? enumeration
 | | | +++-:(non-candidate)
 | | | +++-ro non-candidate-bsr-state? enumeration
 | +++-ro bsr-next-bootstrap? uint16
 +++-ro rp
 | +++-ro rp-address? inet:ip-address
 | +++-ro policy-name? string
| | +--ro up-time? rt-types:timeticks64
| +--ro rp-candidate-next-advertisement? uint16
+-ro rp-list
 +--ro ipv4-rp* [rp-address mode]
 | | +--ro rp-address inet:ipv4-address
 | | +--ro mode identityref
 | | +--ro info-source-address? inet:ipv4-address
 | | +--ro info-source-type? identityref
 | | +--ro up-time? rt-types:timeticks64
 | | +--ro expiration? rt-types:timer-value-seconds16
 +--ro ipv6-rp* [rp-address mode]
 | | +--ro rp-address inet:ipv6-address
 | | +--ro mode identityref
 | | +--ro info-source-address? inet:ipv6-address
 | | +--ro info-source-type? identityref
 | | +--ro up-time? rt-types:timeticks64
 | | +--ro expiration? rt-types:timer-value-seconds16
 | | +--ro instance-af-ref? leafref
 | | +--ro group? rt-types:ip-multicast-group-address
 | | +--ro rp-address? inet:ip-address
 | | +--ro is-rpt? boolean
 | | +--ro mode? identityref
 | | +--ro message-origin? inet:ip-address
 +--ro ipv4-rp* [group-range rp-address]
 | | +--ro group-range inet:ipv4-prefix
 | | +--ro rp-address inet:ipv4-address
 | | +--ro up-time? rt-types:timeticks64
 | | +--ro expiration? rt-types:timer-value-seconds16
 +--ro ipv6-rp* [group-range rp-address]
 | | +--ro group-range inet:ipv6-prefix
 | | +--ro rp-address inet:ipv6-address
 | | +--ro up-time? rt-types:timeticks64
 | | +--ro expiration? rt-types:timer-value-seconds16

notifications:
 +--n pim-rp-event
 +--ro event-type? rp-event-type
 +--ro instance-af-ref? leafref
 +--ro group? rt-types:ip-multicast-group-address
 +--ro rp-address? inet:ip-address
 +--ro is-rpt? boolean
 +--ro mode? identityref
 +--ro message-origin? inet:ip-address
4.3. PIM-SM Module

```yang
define module ietf-pim-sm
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
    /pim-base:address-family:
        +--rw sm
            +--rw asm
                | +--rw anycast-rp!
                | | +--rw ipv4-anycast-rp* [anycast-address rp-address]
                | | | +--rw anycast-address inet:ipv4-address
                | | | +--rw rp-address inet:ipv4-address
                | | +--rw ipv6-anycast-rp* [anycast-address rp-address]
                | | | +--rw anycast-address inet:ipv6-address
                | | | +--rw rp-address inet:ipv6-address
                | +--rw spt-switch
                | +--rw infinity! {spt-switch-infinity}?
                | | +--rw policy-name? string {spt-switch-policy}?
            +--rw ssm!
            +--rw range-policy? string
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
    /pim-base:interfaces/pim-base:interface
    /pim-base:address-family:
        +--rw sm!
        +--rw passive? empty
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
    /pim-base:address-family/pim-rp:rp/pim-rp:static-rp
    /pim-rp:ipv4-rp:
        +--rw sm!
        +--rw policy-name? string
        +--rw override? boolean {static-rp-override}?
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
    /pim-base:address-family/pim-rp:rp/pim-rp:static-rp
    /pim-rp:ipv6-rp:
        +--rw sm!
        +--rw policy-name? string
        +--rw override? boolean {static-rp-override}?
```

4.4. PIM-DM Module

```yang
define module ietf-pim-dm
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
    /pim-base:address-family:
        +--rw dm!
    augment /rt:routing/rt:control-plane-protocols/pim-base:pim
    /pim-base:interfaces/pim-base:interface
    /pim-base:address-family:
        +--rw dm!
```
4.5. BIDIR-PIM Module

module: ietf-pim-bidir
augment /rt:routing/rt:control-plane-protocols/pim-base:pim
/pim-base:address-family:
 +--rw bidir!
augment /rt:routing/rt:control-plane-protocols/pim-base:pim
/pim-base:interfaces/pim-base:interface
/pim-base:address-family:
 +--rw bidir!
 +--rw df-election {intf-df-election}?
 +--rw offer-interval? uint16
 +--rw backoff-interval? uint16
 +--rw offer-multiplier? uint8
augment /rt:routing/rt:control-plane-protocols/pim-base:pim
/pim-base:address-family/pim-rp:rp/pim-rp:static-rp
/pim-rp:ipv4-rp:
 +--rw bidir!
 +--rw policy-name? string
 +--rw override? boolean {static-rp-override}?
augment /rt:routing/rt:control-plane-protocols/pim-base:pim
/pim-base:address-family/pim-rp:rp/pim-rp:static-rp
/pim-rp:ipv6-rp:
 +--rw bidir!
 +--rw policy-name? string
 +--rw override? boolean {static-rp-override}?
augment /rt:routing/rt:control-plane-protocols/pim-base:pim
/pim-base:address-family/pim-rp:rp:
 +--ro bidir
 +--ro df-election
 | +--ro ipv4-rp* [rp-address]
 | | +--ro ipv4-address inet:ipv4-address
 | +--ro ipv6-rp* [rp-address]
 | | +--ro ipv6-address inet:ipv6-address
 +--ro interface-df-election
 | +--ro ipv4-rp* [rp-address interface-name]
 | | +--ro rp-address inet:ipv4-address
 | | +--ro interface-name if:interface-ref
 | | +--ro df-address? inet:ipv4-address
 | +--ro interface-state? identityref
 | +--ro up-time? rt-types:timeticks64
 | +--ro winner-metric? uint32
 | +--ro winner-metric-preference? uint32
 +--ro ipv6-rp* [rp-address interface-name]
 | +--ro rp-address inet:ipv6-address
 | +--ro interface-name if:interface-ref
 | +--ro df-address? inet:ipv6-address
 | +--ro interface-state? identityref
 | +--ro up-time? rt-types:timeticks64
 | +--ro winner-metric? uint32
 | +--ro winner-metric-preference? uint32
augment /rt:routing/rt:control-plane-protocols/pim-base:pim
/pim-base:interfaces/pim-base:interface
/pim-base:address-family/pim-base:neighbors
/pim-base:ipv4-neighbor:
 +--ro bidir-capable? boolean
5. Relationship to the PIM-STD-MIB

The following sections describe the mappings between the objects in the PIM-STD-MIB defined in [RFC5060] and the YANG data nodes defined in this document.

5.1. pimInterfaceTable

pimInterfaceTable is mapped to pim/interfaces/interface. The key of pimInterfaceTable is pimInterfaceIfIndex and pimInterfaceIPVersion, while the key of the "interface" list in YANG is the node "name". For each value of pimInterfaceIPVersion, the "interface" list contains a corresponding sublist whose key is the node "address-family".

Table 2 lists the YANG data nodes with corresponding objects of pimInterfaceTable in the PIM-STD-MIB.

<table>
<thead>
<tr>
<th>YANG Node</th>
<th>PIM-STD-MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-family</td>
<td>pimInterfaceAddressType</td>
</tr>
<tr>
<td>ipv4/address</td>
<td>pimInterfaceAddress</td>
</tr>
<tr>
<td>ipv6/address</td>
<td></td>
</tr>
<tr>
<td>gen-id</td>
<td>pimInterfaceGenerationIDValue</td>
</tr>
<tr>
<td>ipv4/dr-address</td>
<td>pimInterfaceDR</td>
</tr>
<tr>
<td>ipv6/dr-address</td>
<td></td>
</tr>
<tr>
<td>dr-priority</td>
<td>pimInterfaceDRPriority</td>
</tr>
<tr>
<td>hello-interval</td>
<td>pimInterfaceHelloInterval</td>
</tr>
<tr>
<td>hello-holdtime</td>
<td>pimInterfaceHelloHoldtime</td>
</tr>
<tr>
<td>jp-interval</td>
<td>pimInterfaceJoinPruneInterval</td>
</tr>
<tr>
<td>jp-holdtime</td>
<td>pimInterfaceJoinPruneHoldtime</td>
</tr>
<tr>
<td>bidir/offer-multiplier</td>
<td>pimInterfaceDFElectionRobustness</td>
</tr>
<tr>
<td>propagation-delay</td>
<td>pimInterfacePropagationDelay</td>
</tr>
</tbody>
</table>
5.2. **pimNeighborTable**

pimNeighborTable is mapped to pim/interfaces/interface/neighbors/ipv4-neighbor and pim/interfaces/interface/neighbors/ipv6-neighbor.

Table 3 lists the YANG data nodes with corresponding objects of pimNeighborTable in the PIM-STD-MIB.

<table>
<thead>
<tr>
<th>YANG Node</th>
<th>PIM-STD-MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>override-interval</td>
<td>pimInterfaceOverrideInterval</td>
</tr>
</tbody>
</table>

Table 2: YANG Nodes and pimInterfaceTable Objects

5.3. **pimStarGTable**

pimStarGTable is mapped to pim/address-family/topology-tree-info/ipv4-route and pim/address-family/topology-tree-info/ipv6-route, when the value of the "source-address" leaf is "ietf-routing-types:*" and the value of the "is-rpt" leaf is "false".

Table 4 lists the YANG data nodes with corresponding objects of pimStarGTable in the PIM-STD-MIB.

<table>
<thead>
<tr>
<th>YANG Node</th>
<th>PIM-STD-MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-neighbor</td>
<td>pimNeighborAddressType</td>
</tr>
<tr>
<td>ipv6-neighbor</td>
<td></td>
</tr>
<tr>
<td>address</td>
<td>pimNeighborAddress</td>
</tr>
<tr>
<td>gen-id</td>
<td>pimNeighborGenerationIDValue</td>
</tr>
<tr>
<td>up-time</td>
<td>pimNeighborUpTime</td>
</tr>
<tr>
<td>expiration</td>
<td>pimNeighborExpiryTime</td>
</tr>
<tr>
<td>dr-priority</td>
<td>pimNeighborDRPriority</td>
</tr>
<tr>
<td>lan-prune-delay/present</td>
<td>pimNeighborLanPruneDelayPresent</td>
</tr>
<tr>
<td>lan-prune-delay/t-bit</td>
<td>pimNeighborTBit</td>
</tr>
<tr>
<td>lan-prune-delay/propagation-delay</td>
<td>pimNeighborPropagationDelay</td>
</tr>
<tr>
<td>lan-prune-delay/override-interval</td>
<td>pimNeighborOverrideInterval</td>
</tr>
<tr>
<td>ietf-pim-bidir:bidir-capable</td>
<td>pimNeighborBidirCapable</td>
</tr>
</tbody>
</table>

Table 3: YANG Nodes and pimNeighborTable Objects
In addition, the object "pimStarGPimModeOrigin" in pimStarGTable is mapped to the node "rp/r-list/ipv4-rp/info-source-type" or the node "rp/r-list/ipv6-rp/info-source-type" in the YANG module "ietf-pim-rp".

5.4. pimSGTable

pimSGTable is mapped to pim/address-family/topology-tree-info/ipv4-route and pim/address-family/topology-tree-info/ipv6-route, when the value of the "source-address" leaf is not "ietf-routing-types:*" and the value of the "is-rpt" leaf is "false".

Table 5 lists the YANG data nodes with corresponding objects of pimSGTable in the PIM-STD-MIB.

<table>
<thead>
<tr>
<th>YANG Node</th>
<th>PIM-STD-MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-route</td>
<td>pimSGAddressType</td>
</tr>
<tr>
<td>ipv6-route</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>pimSGGrpAddress</td>
</tr>
<tr>
<td>up-time</td>
<td>pimSGUpTime</td>
</tr>
<tr>
<td>mode</td>
<td>pimSGPimMode</td>
</tr>
<tr>
<td>rp-address</td>
<td>pimSGRPAddressType</td>
</tr>
<tr>
<td></td>
<td>pimSGRPAddress</td>
</tr>
<tr>
<td>rpf-neighbor</td>
<td>pimSGUpstreamNeighborType</td>
</tr>
<tr>
<td></td>
<td>pimSGUpstreamNeighbor</td>
</tr>
<tr>
<td>incoming-interface</td>
<td>pimSGRPFIfIndex</td>
</tr>
</tbody>
</table>

Table 4: YANG Nodes and pimStarGTable Objects

In addition, the object "pimStarGPimModeOrigin" in pimStarGTable is mapped to the node "rp/rp-list/ipv4-rp/info-source-type" or the node "rp/rp-list/ipv6-rp/info-source-type" in the YANG module "ietf-pim-rp".
5.5. pimSGRptTable

pimSGRptTable is mapped to pim/address-family/topology-tree-info/ipv4-route and pim/address-family/topology-tree-info/ipv6-route, when the value of the "is-rpt" leaf is "true".

Table 6 lists the YANG data nodes with corresponding objects of pimSGRptTable in the PIM-STD-MIB.

<table>
<thead>
<tr>
<th>YANG Node</th>
<th>PIM-STD-MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpf-neighbor</td>
<td>pimStarGUpstreamNeighbor</td>
</tr>
<tr>
<td>incoming-interface</td>
<td>pimStarGRPFIfIndex</td>
</tr>
<tr>
<td>is-spt</td>
<td>pimSGSPTBit</td>
</tr>
<tr>
<td>expiration</td>
<td>pimSGKeepaliveTimer</td>
</tr>
</tbody>
</table>

Table 5: YANG Nodes and pimSGTable Objects

5.6. pimBidirDFElectionTable

pimBidirDFElectionTable is mapped to pim/address-family/rp/bidir/interface-df-election/ipv4-rp and pim/address-family/rp/bidir/interface-df-election/ipv6-rp. The key of pimBidirDFElectionTable includes pimBidirDFElectionIfIndex, whose type is InterfaceIndex, while the YANG lists use a node "name" with the type string instead.

Table 7 lists the YANG data nodes with corresponding objects of pimBidirDFElectionTable in the PIM-STD-MIB.

<table>
<thead>
<tr>
<th>YANG Node</th>
<th>PIM-STD-MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-rp</td>
<td>pimBidirDFElectionAddressType</td>
</tr>
<tr>
<td>ipv6-rp</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>pimStarGGrpAddress</td>
</tr>
<tr>
<td>source-address</td>
<td>pimGRptSrcAddress</td>
</tr>
<tr>
<td>up-time</td>
<td>pimGRptUpTime</td>
</tr>
</tbody>
</table>

Table 6: YANG Nodes and pimSGRptTable Objects
5.7. **pimStaticRPTable**

pimStaticRPTable is mapped to pim/address-family/rp/static-rp/ipv4-rp and pim/address-family/rp/static-rp/ipv6-rp.

Table 8 lists the YANG data nodes with corresponding objects of pimStaticRPTable in the PIM-STD-MIB.

<table>
<thead>
<tr>
<th>YANG Node</th>
<th>PIM-STD-MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-rp</td>
<td></td>
</tr>
<tr>
<td>rp-address</td>
<td>pimBidirDFElectionRPAddress</td>
</tr>
<tr>
<td>df-address</td>
<td>pimBidirDFElectionWinnerAddressType</td>
</tr>
<tr>
<td></td>
<td>pimBidirDFElectionWinnerAddress</td>
</tr>
<tr>
<td>up-time</td>
<td>pimBidirDFElectionWinnerUpTime</td>
</tr>
<tr>
<td>winner-metric-preference</td>
<td>pimBidirDFElectionWinnerMetricPref</td>
</tr>
<tr>
<td>interface-state</td>
<td>pimBidirDFElectionWinnerMetric</td>
</tr>
</tbody>
</table>

Table 7: YANG Nodes and pimBidirDFElectionTable Objects

5.8. **pimAnycastRPSetTable**

pimAnycastRPSetTable is mapped to pim/address-family/sm/asm/anycast-rp/ipv4-anycast-rp and pim/address-family/sm/asm/anycast-rp/ipv6-anycast-rp.

<table>
<thead>
<tr>
<th>YANG Node</th>
<th>PIM-STD-MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-rp</td>
<td>pimStaticRPAddressType</td>
</tr>
<tr>
<td>ipv6-rp</td>
<td></td>
</tr>
<tr>
<td>rp-address</td>
<td>pimStaticRPRPAAddress</td>
</tr>
<tr>
<td>bidir</td>
<td>pimStaticRPImMode</td>
</tr>
<tr>
<td>sm</td>
<td></td>
</tr>
<tr>
<td>bidir/override</td>
<td>pimStaticRPOverrideDynamic</td>
</tr>
<tr>
<td>sm/override</td>
<td></td>
</tr>
</tbody>
</table>

Table 8: YANG Nodes and pimStaticRPTable Objects
Table 9 lists the YANG data nodes with corresponding objects of pimAnycastRPSetTable in the PIM-STD-MIB.

<table>
<thead>
<tr>
<th>YANG Node</th>
<th>PIM-STD-MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-anycast-rp</td>
<td>pimAnycastRPSetAddressType</td>
</tr>
<tr>
<td>ipv6-anycast-rp</td>
<td></td>
</tr>
<tr>
<td>anycast-address</td>
<td>pimAnycastRPSetAnycastAddress</td>
</tr>
<tr>
<td>rp-address</td>
<td>pimAnycastRPSetRouterAddress</td>
</tr>
</tbody>
</table>

Table 9: YANG Nodes and pimAnycastRPSetTable Objects

5.9. pimGroupMappingTable

pimGroupMappingTable is mapped to pim/address-family/rp/rp-mappings/ipv4-rp and pim/address-family/rp/rp-mappings/ipv6-rp.

Table 10 lists the YANG data nodes with corresponding objects of pimGroupMappingTable in the PIM-STD-MIB.

<table>
<thead>
<tr>
<th>YANG Node</th>
<th>PIM-STD-MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-rp</td>
<td>pimGroupMappingAddressType</td>
</tr>
<tr>
<td>ipv6-rp</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>pimGroupMappingGrpAddress</td>
</tr>
<tr>
<td></td>
<td>pimGroupMappingGrpPrefixLength</td>
</tr>
<tr>
<td>ipv4-rp</td>
<td>pimGroupMappingRPAddressType</td>
</tr>
<tr>
<td>ipv6-rp</td>
<td></td>
</tr>
<tr>
<td>rp-address</td>
<td>pimGroupMappingRPAddress</td>
</tr>
<tr>
<td></td>
<td>pimGroupMappingPimMode</td>
</tr>
</tbody>
</table>

Table 10: YANG Nodes and pimGroupMappingTable Objects

In addition, the object "pimGroupMappingPimMode" in pimGroupMappingTable is mapped to the node "rp/rp-list/ipv4-rp/mode" or the node "rp/rp-list/ipv6-rp/mode" in the YANG module "ietf-pim-rp".
6. PIM YANG Modules

6.1. PIM Base Module

This module references [RFC3973], [RFC5015], [RFC5880], [RFC6991], [RFC7761], [RFC8294], [RFC8343], [RFC8349], [RFC8706], and [RFC9314].

```yml
<CODE BEGINS> file "ietf-pim-base@2022-10-19.yang"

module ietf-pim-base {
  yang-version 1.1;
  prefix pim-base;

  import ietf-inet-types {
    prefix inet;
    reference
      "RFC 6991: Common YANG Data Types";
  }
  import ietf-yang-types {
    prefix yang;
    reference
      "RFC 6991: Common YANG Data Types";
  }
  import ietf-routing-types {
    prefix rt-types;
    reference
      "RFC 8294: Common YANG Data Types for the Routing Area";
  }
  import ietf-interfaces {
    prefix if;
    reference
      "RFC 8343: A YANG Data Model for Interface Management";
  }
  import ietf-routing {
    prefix rt;
    reference
      "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)";
  }
  import ietf-bfd-types {
    prefix bfd-types;
    reference
      "RFC 9314: YANG Data Model for Bidirectional Forwarding Detection (BFD)";
  }

  organization
    "IETF PIM Working Group";
  contact
    "WG Web:  <https://datatracker.ietf.org/wg/pim/>"
    "WG List:  <mailto:pim@ietf.org>"
    "Editor:  Xufeng Liu"

<CODE ENDS>
This module defines a collection of YANG definitions common for all PIM (Protocol Independent Multicast) modes.

Copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC 9128; see the RFC itself for full legal notices.

revision 2022-10-19 {
  description
    "Initial revision.";
  reference
    "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)";
}

/*
 * Features
 */

feature bfd {
  description
    "Supports BFD (Bidirectional Forwarding Detection).";
  reference
    "RFC 5880: Bidirectional Forwarding Detection (BFD)";
}

feature global-graceful-restart {
  description
    "Global configuration for graceful restart support as per RFC 8706.";
  reference
    "RFC 8706: Restart Signaling for IS-IS";
feature intf-dr-priority {
    description "Supports configuration of an interface DR (Designated Router) priority.";
    reference "RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.3.2";
}

feature intf-hello-holdtime {
    description "Supports configuration of the interface Hello Holdtime.";
    reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.3.3
RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11";
}

feature intf-hello-interval {
    description "Supports configuration of the interface Hello interval.";
    reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.8
RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11";
}

feature intf-hello-multiplier {
    description "Supports configuration of the interface Hello multiplier (the number by which the Hello interval is multiplied to obtain the Hello Holdtime).";
    reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.8
RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11";
}

feature intf-jp-interval {
    description "Supports configuration of the interface Join/Prune interval.";
    reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.8
RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11";
}

feature intf-jp-holdtime {
    description "Supports configuration of the interface Join/Prune Holdtime.";
    reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.8
RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11";
}
typedef interface-event-type {
  type enumeration {
    enum up {
      description "Neighbor status changed to 'up'.";
    }
  }
}

feature intf-jp-multiplier {
  description "Supports configuration of the interface Join/Prune multiplier (the number by which the Join/Prune interval is multiplied to obtain the Join/Prune Holdtime).";
  reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.8
RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11";
}

feature intf-propagation-delay {
  description "Supports configuration of interface propagation delay.";
  reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.3.5
RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.3.3";
}

feature intf-override-interval {
  description "Supports configuration of the interface override interval.";
  reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Sections 4.1.1 and 4.8
RFC 5015: Bidirectional Protocol Independent Multicast (BIDIR-PIM), Section 3.6
RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11";
}

feature per-af-graceful-restart {
  description "Per address family configuration for graceful restart support as per RFC 8706.";
  reference "RFC 8706: Restart Signaling for IS-IS";
}

/*
 * Typedefs
 */
typedef interface-event-type {
  type enumeration {
    enum up {
      description "Neighbor status changed to 'up'.";
    }
  }
}
enum down {
    description
    "Neighbor status changed to 'down'.";
}

enum new-dr {
    description
    "A new DR (Designated Router) was elected on the connected network.";
}

enum new-df {
    description
    "A new DF (Designated Forwarder) was elected on the connected network.";
}

description
"Operational status event type for notifications.";

typedef neighbor-event-type {
    type enumeration {
        enum up {
            description
            "Neighbor status changed to 'up'.";
        }
        enum down {
            description
            "Neighbor status changed to 'down'.";
        }
        description
        "Operational status event type for notifications.";
    }

    /*
    * Identities
    */

    identity pim-mode {
        description
        "The PIM mode in which a group is operating.";
    }

    identity pim-none {
        base pim-mode;
        description
        "PIM is not operating.";
    }

    identity pim-bidir {
        base pim-mode;
        description
        "PIM is operating in Bidirectional Mode.";
    }

    identity pim-dm {
        base pim-mode;
        description
        "PIM is operating in Dense Mode.";
    }
}
"PIM is operating in Dense Mode (DM).";
}

identity pim-sm {
  base pim-mode;
  description
    "PIM is operating in Sparse Mode (SM).";
}

identity pim-asm {
  base pim-sm;
  description
    "PIM is operating in Sparse Mode with Any-Source Multicast (ASM).";
}

identity pim-ssm {
  base pim-sm;
  description
    "PIM is operating in Sparse Mode with Source-Specific Multicast (SSM).";
}

/*
 * Groupings
 */

grouping graceful-restart-container {
  description
    "A grouping defining a container of graceful restart attributes.";
  container graceful-restart {
    leaf enabled {
      type boolean;
      default "false";
      description
        "Enables or disables graceful restart.";
    }
    leaf duration {
      type uint16;
      units "seconds";
      default "60";
      description
        "Maximum time for graceful restart to finish.";
    }
  }
  description
    "Container of graceful restart attributes.";
} // graceful-restart-container

grouping multicast-route-attributes {
  description
    "A grouping defining multicast route attributes.";
  leaf expiration {
    type rt-types:timer-value-seconds16;
    description
      "When the route will expire.";
  }
}
leaf incoming-interface {
  type if:interface-ref;
  description
    "Reference to an entry in the global interface list.";
}
leaf is-spt {
  type boolean;
  description
    "'true' if the SPTbit (Shortest Path Tree bit) is set to
    indicate that forwarding is taking place on the
    (S,G) SPT.";
  reference
    "RFC 7761: Protocol Independent Multicast - Sparse Mode
    (PIM-SM): Protocol Specification (Revised), Section 4.1.3";
}
leaf mode {
  type identityref {
    base pim-mode;
  }
  description
    "PIM mode.";
}
leaf msdp-learned {
  type boolean;
  description
    "'true' if the route is learned from MSDP (the Multicast
    Source Discovery Protocol).";
}
leaf rp-address {
  type inet:ip-address;
  description
    "RP (Rendezvous Point) address.";
}
leaf rpf-neighbor {
  type inet:ip-address;
  description
    "RPF (Reverse Path Forwarding) neighbor address.";
}
leaf up-time {
  type rt-types:timeticks64;
  description
    "The number of time ticks (hundredths of a second) since the
    route last transitioned into the active state.";
}
list outgoing-interface {
  key "name";
  description
    "A list of outgoing interfaces.";
  leaf name {
    type if:interface-ref;
    description
      "Interface name.";
  }
  leaf expiration {
    type rt-types:timer-value-seconds16;
    description
      "Expiration time.";
  }
}
leaf up-time {
  type rt-types:timeticks64;
  description
      "The number of time ticks (hundredths of a second) since
      the 'oper-status' setting of the interface was last
      changed to 'up'.";
}

leaf jp-state {
  type enumeration {
    enum no-info {
      description
          "The interface has no (*,G) Join state and no timers
          running.";
    }
    enum join {
      description
          "The interface has Join state.";
    }
    enum prune-pending {
      description
          "The router has received a Prune on this interface from
          a downstream neighbor and is waiting to see whether
          the Prune will be overridden by another downstream
          router. For forwarding purposes, the Prune-Pending
          state functions exactly like the Join state.";
    }
  }
  description
      "Join/Prune state.";
}
} // multicast-route-attributes

grouping neighbor-state-af-attributes {
  description
      "A grouping defining neighbor per address family attributes.";
  leaf bfd-state {
    type bfd-types:state;
    description
      "BFD (Bidirectional Forwarding Detection) status.";
  }
  leaf expiration {
    type rt-types:timer-value-seconds16;
    description
      "Neighbor expiration time.";
  }
  leaf dr-priority {
    type uint32;
    description
      "DR (Designated Router) priority as the preference in the DR
      election process.";
  }
  leaf gen-id {
    type uint32;
    description
      "The value of the Generation ID in the last Hello message
      from the neighbor.";
  }
}
container lan-prune-delay {
  description
  "The information of the LAN Prune Delay option in the Hello
  message from the neighbor.";
  leaf present {
    type boolean;
    description
    "'true' if the LAN Prune Delay option is present in the
    last Hello message from the neighbor.";
  }
  leaf override-interval {
    when "./present = 'true'" {
      description
      "Available only when 'leaf present' is 'true'.";
    }
    type uint16;
    units "milliseconds";
    description
    "The value of the Override_Interval field of the LAN Prune
    Delay option in the last Hello message from the neighbor.
    The neighbor uses this value to indicate a short period
    after a Join or Prune to allow other routers on the LAN
to override the Join or Prune.";
  }
  leaf propagation-delay {
    when "./present = 'true'" {
      description
      "Available only when 'leaf present' is 'true'.";
    }
    type uint16;
    units "milliseconds";
    description
    "The value of the Propagation_Delay field of the LAN Prune
    Delay option in the last Hello message from the neighbor.
    The value is the propagation delay over the local link
    expected by the neighbor.";
  }
  leaf t-bit {
    when "./present = 'true'" {
      description
      "Available only when 'leaf present' is 'true'.";
    }
    type boolean;
    description
    "'true' if the T bit is set in the LAN Prune Delay option
    in the last Hello message from the neighbor. This flag
    indicates the neighbor's ability to disable Join
    message suppression.";
  }
  leaf up-time {
    type rt-types:timeticks64;
    description
    "The number of time ticks (hundredths of a second) since
    the neighbor relationship has been formed as reachable
    without being timed out.";
  }
} // neighbor-state-af-attributes
grouping pim-instance-af-state-ref {
  description
  "An absolute reference to a PIM instance address family.";
  leaf instance-af-ref {
    type leafref {
      path "/rt:routing/rt:control-plane-protocols/
          + "pim-base:pim/pim-base:address-family/"
          + "pim-base:address-family";
    }
    description
    "Reference to a PIM instance address family.";
  }
} // pim-instance-af-state-ref

grouping pim-interface-state-ref {
  description
  "An absolute reference to a PIM interface state.";
  leaf interface-ref {
    type leafref {
      path "/rt:routing/rt:control-plane-protocols/
          + "pim-base:name";
    }
    description
    "Reference to a PIM interface.";
  }
} // pim-interface-state-ref

grouping statistics-sent-received {
  description
  "A grouping defining sent and received statistics
   on PIM messages.";
  reference
  "RFC 3973: Protocol Independent Multicast - Dense Mode
   (PIM-DM): Protocol Specification (Revised), Section 4.7.1
   RFC 5815: Bidirectional Protocol Independent Multicast
   (BIDIR-PIM), Section 3.7
   RFC 7761: Protocol Independent Multicast - Sparse Mode
   (PIM-SM): Protocol Specification (Revised), Section 4.9";
  leaf assert {
    type yang:counter64;
    description
    "The number of Assert messages, with the message Type
     of 5 (RFCs 3973 and 7761).";
    reference
    "RFC 3973: Protocol Independent Multicast - Dense Mode
     (PIM-DM): Protocol Specification (Revised)
     RFC 7761: Protocol Independent Multicast - Sparse Mode
     (PIM-SM): Protocol Specification (Revised)";
  }
  leaf bsr {
    type yang:counter64;
    description
    "The number of Bootstrap messages, with the message Type
     of 4 (RFCs 3973 and 7761).";
  }
  leaf candidate-rp-advertisement {
}
type yang:counter64;
description
 "The number of Candidate RP Advertisement messages, with the message Type of 8 (RFCs 3973 and 7761).";
}
leaf df-election {
type yang:counter64;
description
 "The number of DF (Designated Forwarder) election messages, with the message Type of 10 (RFC 5015).";
reference
 "RFC 5015: Bidirectional Protocol Independent Multicast (BIDIR-PIM)";
}
leaf graft {
type yang:counter64;
description
 "The number of Graft messages, with the message Type of 6 (RFCs 3973 and 7761).";
}
leaf graft-ack {
type yang:counter64;
description
 "The number of Graft-Ack messages, with the message Type of 7 (RFCs 3973 and 7761).";
}
leaf hello {
type yang:counter64;
description
 "The number of Hello messages, with the message Type of 0 (RFCs 3973 and 7761).";
}
leaf join-prune {
type yang:counter64;
description
 "The number of Join/Prune messages, with the message Type of 3 (RFCs 3973 and 7761).";
}
leaf register {
type yang:counter64;
description
 "The number of Register messages, with the message Type of 1 (RFCs 3973 and 7761).";
}
leaf register-stop {
type yang:counter64;
description
 "The number of Register-Stop messages, with the message Type of 2 (RFCs 3973 and 7761).";
}
leaf state-refresh {
type yang:counter64;
description
 "The number of State Refresh messages, with the message Type of 9 (RFC 3973).";
}
} // statistics-sent-received
/*
 * Data nodes
 */

augment "/rt:routing/rt:control-plane-protocols" {
  description
  "PIM augmentation to the routing instance model.";
  container pim {
    presence "Enables the PIM protocol.";
    description
    "PIM configuration data and operational state data.";
    uses graceful-restart-container {
      if-feature "global-graceful-restart";
    }
    list address-family {
      key "address-family";
      description
      "Each list entry for one address family.";
      uses rt:address-family;
      uses graceful-restart-container {
        if-feature "per-af-graceful-restart";
      }
    }
    container statistics {
      config false;
      description
      "A container defining statistics attributes.";
      leaf discontinuity-time {
        type yang:date-and-time;
        description
        "The time of the most recent occasion at which any one
          or more of the statistics counters suffered a
          discontinuity. If no such discontinuities have
          occurred since the last reinitialization of the local
          management subsystem, then this node contains the time
          the local management subsystem reinitialized
          itself.";
      }
    }
    container error {
      description
      "Contains error statistics.";
      uses statistics-sent-received {
        description
        "Statistics counters on the PIM messages per PIM
          message Type. Each leaf attribute counts the number
          of PIM messages that were of a particular Type (such
          as Hello) and contained errors preventing them from
          being processed by PIM.

          Such messages are also counted by the corresponding
          counter of the same Type (such as Hello) in the
          'received' container.";
      }
      leaf checksum {
        type yang:counter64;
        description
        "The number of PIM messages that were passed to PIM
          and contained checksum errors.";
      }
    }
  }
}
leaf format {
  type yang:counter64;
  description
  "The number of PIM messages that passed checksum validation but contained format errors, including errors related to PIM Version, Type, and message length.";
}
}

container queue {
  description
  "Contains queue statistics.";
  leaf size {
    type uint32;
    description
    "The size of the input queue.";
  }
  leaf overflow {
    type yang:counter32;
    description
    "The number of input queue overflows.";
  }
}

container received {
  description
  "Contains statistics of received messages.";
  uses statistics-sent-received;
}

container sent {
  description
  "Contains statistics of sent messages.";
  uses statistics-sent-received;
}

container topology-tree-info {
  config false;
  description
  "Contains topology tree information.";
  list ipv4-route {
    when "@/.../address-family = 'rt:ipv4'" {
      description
      "Only applicable to an IPv4 address family.";
    }
    key "group source-address is-rpt";
    description
    "A list of IPv4 routes.";
    leaf group {
      type rt-types:ipv4-multicast-group-address;
      description
      "Group address.";
    }
    leaf source-address {
      type rt-types:ipv4-multicast-source-address;
      description
      "Source address.";
    }
    leaf is-rpt {
      type boolean;
description
  "'true' if the tree is an RPT
   (Rendezvous Point Tree).";
}
uses multicast-route-attributes;
} // ipv4-route
list ipv6-route {
  when "../../../address-family = 'rt:ipv6'" {
    description
      "Only applicable to an IPv6 address family.";
  }
  key "group source-address is-rpt";
  description
    "A list of IPv6 routes.";
  leaf group {
    type rt-types:ipv6-multicast-group-address;
    description
      "Group address.";
  }
  leaf source-address {
    type rt-types:ipv6-multicast-source-address;
    description
      "Source address.";
  }
  leaf is-rpt {
    type boolean;
    description
      "'true' if the tree is an RPT.";
    uses multicast-route-attributes;
  } // ipv6-route
} // topology-tree-info
container interfaces {
  description
    "Contains a list of interfaces.";
  list interface {
    key "name";
    description
      "List of PIM interfaces.";
    leaf name {
      type if:interface-ref;
      description
        "Reference to an entry in the global interface list.";
    }
  list address-family {
    key "address-family";
    description
      "Each list entry for one address family.";
    uses rt:address-family;
    container bfd {
      if-feature "bfd";
      description
        "BFD (Bidirectional Forwarding Detection)
         operation.";
      uses bfd-types:client-cfg-params;
    }
    leaf dr-priority {
if-feature "intf-dr-priority";
  type uint32;
  default "1";
  description
      "DR (Designated Router) priority as the preference in
      the DR election process.";
}

leaf hello-interval {
  if-feature "intf-hello-interval";
  type rt-types:timer-value-seconds16;
  default "30";
  description
      "Periodic interval for Hello messages.
      If 'infinity' or 'not-set' is used, no periodic
      Hello messages are sent.";
  reference
      "RFC 3973: Protocol Independent Multicast -
      Dense Mode (PIM-DM): Protocol Specification
      (Revised), Section 4.8
      RFC 7761: Protocol Independent Multicast - Sparse
      Mode (PIM-SM): Protocol Specification (Revised),
      Section 4.11";
}

choice hello-holdtime-or-multiplier {
  description
      "The Holdtime is the timer value to time out the
      neighbor state when the timer expires.
      The Holdtime value can be specified by either
      (1) the given Holdtime value or (2) the calculation
      of the Hello interval multiplied by the given value
      of the multiplier.";
  case holdtime {
    if-feature "intf-hello-holdtime";
    leaf hello-holdtime {
      type rt-types:timer-value-seconds16;
      default "105";
      description
          "The Hello Holdtime is the amount of time to
          keep the neighbor reachable until a new
          Hello message is received.";
    }
  }
  case multiplier {
    if-feature "intf-hello-multiplier";
    leaf hello-multiplier {
      type rt-types:timer-multiplier;
      default "3";
      description
          "The Hello multiplier is the number by which the
          Hello interval is multiplied to obtain the
          Hello Holdtime.
          The value of the Hello Holdtime is calculated
          as:
          hello-holdtime =
          (multiplier + 0.5) * (hello-interval).";
    }
  }
}
leaf jp-interval {
  if-feature "intf-jp-interval";
  type rt-types:timer-value-seconds16;
  default "60";
  description
    "Periodic interval between Join/Prune messages.
    If 'infinity' or 'not-set' is used, no periodic
    Join/Prune messages are sent."
}

choice jp-holdtime-or-multiplier {
  description
    "The Join/Prune Holdtime is the amount of time a
    receiver must keep the Join/Prune state alive.
    The Holdtime value can be specified by either
    (1) the given Holdtime value or (2) the calculation
    of 'jp-interval' multiplied by the given value of
    the multiplier.";
  case holdtime {
    if-feature "intf-jp-holdtime";
    leaf jp-holdtime {
      type rt-types:timer-value-seconds16;
      default "210";
      description
        "The Join/Prune Holdtime is the amount of time a
        receiver must keep the Join/Prune state alive."
    }
  }
  case multiplier {
    if-feature "intf-jp-multiplier";
    leaf jp-multiplier {
      type rt-types:timer-multiplier;
      default "3";
      description
        "The Join/Prune multiplier is the number
        by which the Join/Prune interval is multiplied
        to obtain the Join/Prune Holdtime.
        The value of the Join/Prune Holdtime is
        calculated as:
        \[ \text{jp-holdtime} = \left( \text{multiplier} + 0.5 \right) \times (\text{jp-interval}). \]
    }
  }
}

leaf override-interval {
  if-feature "intf-override-interval";
  type uint16;
  units "milliseconds";
  default "2500";
  description
    "A short period after a Join or Prune to allow other
    routers on the LAN to override the Join or Prune.";
}

leaf propagation-delay {
  if-feature "intf-propagation-delay";
  type uint16;
  units "milliseconds";
  default "500";
  description
"Expected propagation delay over the local link."

// Interface state attributes
leaf oper-status {
  type enumeration {
    enum up {
      description
      "The interface is ready to pass PIM messages.";
    }
    enum down {
      description
      "The interface does not pass PIM messages.";
    }
  }
  config false;
  description
  "PIM operational status on the interface.  
  This status is PIM specific and separate from the 
  operational status of the underlying interface.";
}
leaf gen-id {
  type uint32;
  config false;
  description
  "The value of the Generation ID this router uses to 
  insert into the PIM Hello message sent on this 
  interface.";
}
leaf hello-expiration {
  type rt-types:timer-value-secs16;
  config false;
  description
  "Hello interval expiration time.";
}
container ipv4 {
  when ".../address-family = 'rt:ipv4'" {
    description
    "Only applicable to an IPv4 address family.";
  }
  config false;
  description
  "Interface state attributes for IPv4.";
} leaf-list address {
  type inet:ipv4-address;
  description
  "List of addresses on which PIM is operating.";
}
leaf dr-address {
  type inet:ipv4-address;
  description
  "DR (Designated Router) address.";
}
} container ipv6 {
  when ".../address-family = 'rt:ipv6'" {
    description
    "Only applicable to an IPv6 address family.";
}
config false;
description
  "Interface state attributes for IPv6.");
leaf-list address {
  type inet:ipv6-address;
  description
    "List of addresses on which PIM is operating.");
}
leaf dr-address {
  type inet:ipv6-address;
  description
    "DR address.");
}
container neighbors {
  config false;
  description
    "Information learned from neighbors through this
    interface.");
list ipv4-neighbor {
  when "../../address-family = 'rt:ipv4'
    description
      "Only applicable to an IPv4 address family.");
  key "address";
  description
    "Neighbor state information.";
  leaf address {
    type inet:ipv4-address;
    description
      "Neighbor address.";
  }
  uses neighbor-state-af-attributes;
} // list ipv4-neighbor
list ipv6-neighbor {
  when "../../address-family = 'rt:ipv6'
    description
      "Only applicable to an IPv6 address family.");
  key "address";
  description
    "Neighbor state information.";
  leaf address {
    type inet:ipv6-address;
    description
      "Neighbor address.";
  }
  uses neighbor-state-af-attributes;
} // list ipv6-neighbor
} // neighbors
} // address-family
} // interface
} // interfaces
} // pim
} // augment
/*
* Notifications
notification pim-neighbor-event {
    description "Notification event for a neighbor.";
    leaf event-type {
        type neighbor-event-type;
        description "Event type.";
    }
    uses pim-interface-state-ref;
    leaf interface-af-ref {
        type leafref {
            path "/rt:routing/rt:control-plane-protocols/
            + "pim-base:pim/pim-base:interfaces/pim-base:interface"
            + "[pim-base:name = current()]/../interface-ref/"
            + "pim-base:address-family/pim-base:address-family";
        }
        description "Reference to a PIM interface address family.";
    }
    leaf neighbor-ipv4-ref {
        when "./interface-af-ref = 'rt:ipv4'" {
            description "Only applicable to an IPv4 address family.";
        }
        type leafref {
            path "/rt:routing/rt:control-plane-protocols/
            + "pim-base:pim/pim-base:interfaces/pim-base:interface"
            + "[pim-base:name = current()]/../interface-ref/"
            + "pim-base:address-family"
            + "[pim-base:address-family = "
            + "current()]/../interface-af-ref/"
            + "pim-base:neighbors/pim-base:ipv4-neighbor/"
            + "pim-base:address";
        }
        description "Reference to a PIM IPv4 neighbor.";
    }
    leaf neighbor-ipv6-ref {
        when "./interface-af-ref = 'rt:ipv6'" {
            description "Only applicable to an IPv6 address family.";
        }
        type leafref {
            path "/rt:routing/rt:control-plane-protocols/
            + "pim-base:pim/pim-base:interfaces/pim-base:interface"
            + "[pim-base:name = current()]/../interface-ref/"
            + "pim-base:address-family"
            + "[pim-base:address-family = "
            + "current()]/../interface-af-ref/"
            + "pim-base:neighbors/pim-base:ipv6-neighbor/"
            + "pim-base:address";
        }
        description "Reference to a PIM IPv6 neighbor.";
    }
    leaf up-time {
}
6.2. PIM RP Module

This module references [RFC5059], [RFC6991], [RFC7761], [RFC8294], [RFC8343], and [RFC8349].
module ietf-pim-rp {
  yang-version 1.1;
  prefix pim-rp;

  import ietf-inet-types {
    prefix inet;
    reference
      "RFC 6991: Common YANG Data Types";
  }
  import ietf-routing-types {
    prefix rt-types;
    reference
      "RFC 8294: Common YANG Data Types for the Routing Area";
  }
  import ietf-interfaces {
    prefix if;
    reference
      "RFC 8343: A YANG Data Model for Interface Management";
  }
  import ietf-routing {
    prefix rt;
    reference
      "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)";
  }
  import ietf-pim-base {
    prefix pim-base;
    reference
      "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)";
  }

  organization
    "IETF PIM Working Group";
  contact
    "WG Web:  <https://datatracker.ietf.org/wg/pim/>
    WG List:  <mailto:pim@ietf.org>
    Editor:   Xufeng Liu
      <mailto:xufeng.liu.ietf@gmail.com>
    Editor:   Pete McAllister
      <mailto:pete.mcallister@metaswitch.com>
    Editor:   Anish Peter
      <mailto:anish.ietf@gmail.com>
    Editor:   Mahesh Sivakumar
      <mailto:sivakumar.mahesh@gmail.com>
    Editor:   Yisong Liu
      <mailto:liuyisong@chinamobile.com>
    Editor:   Fangwei Hu
      <mailto:hufwei@gmail.com>"
  description
    "This YANG module defines a PIM (Protocol Independent Multicast)
RP (Rendezvous Point) model.

Copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC 9128; see the RFC itself for full legal notices.;

revision 2022-10-19 {
  description
    "Initial revision.";
  reference
    "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)";
}

/ * * Features */

feature bsr {
  description
    "This feature indicates that the system supports BSRs (Bootstrap Routers).";
  reference
    "RFC 5059: Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM)";
}

feature bsr-election-state {
  if-feature "bsr";
  description
    "This feature indicates that the system supports providing BSR election state.";
  reference
    "RFC 5059: Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM)";
}

feature static-rp-override {
  description
    "This feature indicates that the system supports configuration of the static RP (Rendezvous Point) that overrides the RP discoveries from other mechanisms.";
  reference
    "RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 3.7";
}

feature candidate-interface {
  description

"This feature indicates that the system supports using an interface to configure a BSR or RP candidate."
}

feature candidate-ipv4 {
  description
  "This feature indicates that the system supports using an IPv4 address to configure a BSR or RP candidate.";
}

feature candidate-ipv6 {
  description
  "This feature indicates that the system supports using an IPv6 address to configure a BSR or RP candidate.";
}

/*============================================================================*/
/* Typedefs */
/*============================================================================*/
typedef rp-event-type {
  type enumeration {
    enum invalid-jp {
      description
      "An invalid Join/Prune message has been received.";
    }
    enum invalid-register {
      description
      "An invalid Register message has been received.";
    }
    enum mapping-created {
      description
      "A new mapping has been created.";
    }
    enum mapping-deleted {
      description
      "A mapping has been deleted.";
    }
  }
  description
  "Operational status event type for notifications.";
}

/*============================================================================*/
/* Identities */
/*============================================================================*/
identity rp-mode {
  description
  "The mode of an RP, which can be SM (Sparse Mode) or BIDIR (Bidirectional).";
}

identity rp-info-source-type {
  description
  "The information source of an RP.";
}
identity static {
    base rp-info-source-type;
    description
        "The RP is statically configured.";
}

identity bootstrap {
    base rp-info-source-type;
    description
        "The RP is learned from a Bootstrap.";
}

/*
 * Groupings
 */

grouping rp-mapping-state-attributes {
    description
        "Grouping of RP mapping attributes.";
    leaf up-time {
        type rt-types:timeticks64;
        description
            "The number of time ticks (hundredths of a second) since
            the RP mapping or the RP became actively available.";
    }
    leaf expiration {
        type rt-types:timer-value-seconds16;
        description
            "Expiration time.";
    }
} // rp-mapping-state-attributes

grouping rp-state-attributes {
    description
        "Grouping of RP state attributes.";
    leaf info-source-type {
        type identityref {
            base rp-info-source-type;
            }
        description
            "The information source of an RP.";
    } // info-source-type
    leaf up-time {
        type rt-types:timeticks64;
        description
            "The number of time ticks (hundredths of a second) since
            the RP became actively available.";
    }
    leaf expiration {
        type rt-types:timer-value-seconds16;
        description
            "Expiration time.";
    }
} // rp-state-attributes

grouping static-rp-attributes {
    description
        "Grouping of static RP attributes, used in augmenting
modules.

leaf policy-name {
  type string;
  description
  "The string value is the name to uniquely identify a
  policy that contains one or more policy rules used to
determine which multicast group addresses are mapped
to this statically configured RP address.
If a policy is not specified, the entire multicast address
space is mapped.
The definition of such a policy is outside the scope
of this document."
}

leaf override {
  if-feature "static-rp-override";
  type boolean;
  default "false";
  description
  "When there is a conflict between static RPs and dynamic RPs,
  setting this attribute to 'true' will ask the system to use
  static RPs."
}

} // static-rp-attributes

grouping rp-candidate-attributes {
  description
  "Grouping of RP candidate attributes.";
  leaf policy-name {
    type string;
    description
    "The string value is the name to uniquely identify a
    policy that contains one or more policy rules used to
accept or reject certain multicast groups.
If a policy is not specified, the entire multicast address
space is accepted.
The definition of such a policy is outside the scope
of this document."
  }

  leaf mode {
    type identityref {
      base rp-mode;
    }
    description
    "The mode of an RP, which can be SM (Sparse Mode) or BIDIR
    (Bidirectional). Each of these modes is defined in a
    separate YANG module. If a system supports an RP mode,
the corresponding YANG module is implemented.
When the value of this leaf is not specified, the default
value is the supported mode if only one mode is implemented,
or the default value is SM if both SM and BIDIR are
implemented."
  }
}

} // rp-candidate-attributes

/*
* Configuration data nodes
*/
augment "'/rt:routing/rt:control-plane-protocols/pim-base:pim/'
  + 'pim-base:address-family' {
    description
    "PIM RP augmentation.";
    container rp {
      description
      "PIM RP configuration data.";
      container static-rp {
        description
        "Contains static RP attributes.";
        list ipv4-rp {
          when "../../../pim-base:address-family = 'rt:ipv4'" {
            description
            "Only applicable to an IPv4 address family.";
          }
          key "rp-address";
          description
          "A list of IPv4 RP addresses.";
          leaf rp-address {
            type inet:ipv4-address;
            description
            "Specifies a static RP address.";
          }
        }
        list ipv6-rp {
          when "../../../pim-base:address-family = 'rt:ipv6'" {
            description
            "Only applicable to an IPv6 address family.";
          }
          key "rp-address";
          description
          "A list of IPv6 RP addresses.";
          leaf rp-address {
            type inet:ipv6-address;
            description
            "Specifies a static RP address.";
          }
        }
      } // static-rp
      container bsr {
        if-feature "bsr";
        description
        "Contains BSR (Bootstrap Router) attributes.";
        container bsr-candidate {
          presence "Present to serve as a BSR candidate.";
          description
          "BSR candidate attributes.";
          choice interface-or-address {
            description
            "Use either an interface or an IP address.";
            case interface {
              if-feature "candidate-interface";
              leaf interface {
                type if:interface-ref;
                mandatory true;
                description
                "Interface to be used by a BSR.";
              }
            }
          } // interface-or-address
        } // bsr-candidate
      } // bsr
    } // rp
  } // address-family

case ipv4-address {
  when "../../../pim-base:address-family = 'rt:ipv4'" {
    description
    "Only applicable to an IPv4 address family.";
  }
  if-feature "candidate-ipv4";
  leaf ipv4-address {
    type inet:ipv4-address;
    mandatory true;
    description
    "IP address to be used by a BSR.";
  }
}

case ipv6-address {
  when "../../../pim-base:address-family = 'rt:ipv6'" {
    description
    "Only applicable to an IPv6 address family.";
  }
  if-feature "candidate-ipv6";
  leaf ipv6-address {
    type inet:ipv6-address;
    mandatory true;
    description
    "IP address to be used by a BSR.";
  }
}

leaf hash-mask-length {
  type uint8 {
    range "0..128";
  }
  mandatory true;
  description
  "Value contained in BSR messages used by all routers to
   hash (map) to an RP.";
}

leaf priority {
  type uint8 {
    range "0..255";
  }
  default "64";
  description
  "BSR election priority among different candidate BSRs. 
   A larger value has a higher priority over a smaller value.";
}

} // bsr-candidate

container rp-candidate {
  description
  "Contains RP candidate attributes.";
  list interface {
    if-feature "candidate-interface";
    key "name";
    description
    "A list of RP candidates.";
    leaf name {
      type if:interface-ref;
description
  "Interface that the RP candidate uses.";
}
uses rp-candidate-attributes;
}
list ipv4-address {
  when "..../.../pim-base:address-family = 'rt:ipv4'" {
    description
      "Only applicable to an IPv4 address family.";
  }
  if-feature "candidate-ipv4"
  key "address"
  description
    "A list of RP candidate addresses."
  leaf address {
    type inet:ipv4-address
    description
      "IPv4 address that the RP candidate uses.";
  }
  uses rp-candidate-attributes;
}
list ipv6-address {
  when "..../.../pim-base:address-family = 'rt:ipv6'" {
    description
      "Only applicable to an IPv6 address family.";
  }
  if-feature "candidate-ipv6"
  key "address"
  description
    "A list of RP candidate addresses."
  leaf address {
    type inet:ipv6-address
    description
      "IPv6 address that the RP candidate uses.";
  }
  uses rp-candidate-attributes;
}
// BSR state attributes
container bsr {
  config false;
  description
    "BSR information.";
  leaf address {
    type inet:ip-address
    description
      "BSR address.";
  }
  leaf hash-mask-length {
    type uint8
    range "0..128"
    description
      "Hash mask length.";
  }
  leaf priority {
    type uint8
    range "0..255";
leaf up-time {
  type rt-types:timeticks64;
  description
    "The number of time ticks (hundredths of a second) since the BSR came up.";
}

choice election-state {
  if-feature "bsr-election-state";
  config false;
  description
    "BSR election state.";
  case candidate {
    leaf candidate-bsr-state {
      type enumeration {
        enum candidate {
          description
            "The router is a candidate to be the BSR for the scope zone, but currently another router is the preferred BSR.";
        }
        enum pending {
          description
            "The router is a candidate to be the BSR for the scope zone. Currently, no other router is the preferred BSR, but this router is not yet the elected BSR. This is a temporary state that prevents rapid thrashing of the choice of BSR during BSR election.";
        }
        enum elected {
          description
            "The router is the elected BSR for the scope zone, and it must perform all of the BSR functions.";
        }
      }
      description
        "Candidate-BSR (C-BSR) state.";
      reference
        "RFC 5059: Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM), Section 3.1.1";
    }
  }
  case non-candidate {
    leaf non-candidate-bsr-state {
      type enumeration {
        enum no-info {
          description
            "The router has no information about this scope zone.";
        }
        enum accept-any {
          description
            "The router is a candidate to be the BSR for the scope zone, but currently another router is the preferred BSR.";
        }
      }
      description
        "Candidate-BSR (C-BSR) state.";
      reference
        "RFC 5059: Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM), Section 3.1.1";
    }
  }
}
"The router does not know of an active BSR and will accept the first Bootstrap message it sees that provides the new BSR’s identity and the RP-Set."

} // election-state

leaf bsr-next-bootstrap {
  type uint16;
  units "seconds";
  config false;
  description "The remaining time interval in seconds until the next Bootstrap will be sent.";
}

container rp {
  config false;
  description "State information of the RP."
  leaf rp-address {
    type inet:ip-address;
    description "RP address."
  }
  leaf policy-name {
    type string;
    description "The string value is the name to uniquely identify a policy that contains one or more policy rules used to accept or reject certain multicast groups. If a policy is not specified, the entire multicast address space is accepted. The definition of such a policy is outside the scope of this document.";
  }
  leaf up-time {
    type rt-types:timeticks64;
    description "The number of time ticks (hundredths of a second) since the RP became actively available."
  }
}
leaf rp-candidate-next-advertisement {
    type uint16;
    units "seconds";
    config false;
    description
        "The remaining time interval in seconds until the next
         RP candidate advertisement will be sent.";
}

} // bsr

container rp-list {
    config false;
    description
        "Contains a list of RPs.";
list ipv4-rp {
    when ../../../pim-base:address-family = 'rt:ipv4' {
        description
            "Only applicable to an IPv4 address family.";
    }
    key "rp-address mode";
    description
        "A list of IPv4 RP addresses.";
leaf rp-address {
    type inet:ipv4-address;
    description
        "RP address.";
}
leaf mode {
    type identityref {
        base rp-mode;
    }
    description
        "RP mode.";
}
leaf info-source-address {
    type inet:ipv4-address;
    description
        "The address where RP information is learned.";
}
uses rp-state-attributes;
}

list ipv6-rp {
    when ../../../pim-base:address-family = 'rt:ipv6' {
        description
            "Only applicable to an IPv6 address family.";
    }
    key "rp-address mode";
    description
        "A list of IPv6 RP addresses.";
leaf rp-address {
    type inet:ipv6-address;
    description
        "RP address.";
}
leaf mode {
    type identityref {
        base rp-mode;
    }
}
description
  "RP mode.";
}
leaf info-source-address {
  type inet:ipv6-address;
  description
  "The address where RP information is learned.";
  uses rp-state-attributes;
} // rp-list
container rp-mappings {
  config false;
  description
  "Contains a list of group-to-RP mappings.";
  list ipv4-rp {
    when "../../../pim-base:address-family = 'rt:ipv4'" {
      description
      "Only applicable to an IPv4 address family.";
    }
    key "group-range rp-address";
    description
    "A list of group-to-RP mappings.";
    leaf group-range {
      type inet:ipv4-prefix;
      description
      "Group range presented in the format of a prefix.";
    }
    leaf rp-address {
      type inet:ipv4-address;
      description
      "RP address.";
    }
    uses rp-mapping-state-attributes;
  }
  list ipv6-rp {
    when "../../../pim-base:address-family = 'rt:ipv6'" {
      description
      "Only applicable to an IPv6 address family.";
    }
    key "group-range rp-address";
    description
    "A list of IPv6 RP addresses.";
    leaf group-range {
      type inet:ipv6-prefix;
      description
      "Group range presented in the format of a prefix.";
    }
    leaf rp-address {
      type inet:ipv6-address;
      description
      "RP address.";
    }
    uses rp-mapping-state-attributes;
  }
} // rp-mappings
} // rp
} // augment
6.3. PIM-SM Module

This module references [RFC4607], [RFC6991], [RFC7761], and [RFC8349].

<CODE BEGINS> file "ietf-pim-sm@2022-10-19.yang"

module ietf-pim-sm {
  yang-version 1.1;
  prefix pim-sm;
}

<CODE ENDS>
import ietf-inet-types {
    prefix inet;
    reference
        "RFC 6991: Common YANG Data Types";
}
import ietf-routing {
    prefix rt;
    reference
        "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)";
}
import ietf-pim-base {
    prefix pim-base;
    reference
        "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)";
}
import ietf-pim-rp {
    prefix pim-rp;
    reference
        "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)";
}

organization
    "IETF PIM Working Group";
contact
    "WG Web:  <https://datatracker.ietf.org/wg/pim/>"
    "WG List:  <mailto:pim@ietf.org>"
    "Editor:  Xufeng Liu  
             <mailto:xufeng.liu.ietf@gmail.com>"
    "Editor:  Pete McAllister  
             <mailto:pete.mcallister@metaswitch.com>"
    "Editor:  Anish Peter  
             <mailto:anish.ietf@gmail.com>"
    "Editor:  Mahesh Sivakumar  
             <mailto:sivakumar.mahesh@gmail.com>"
    "Editor:  Yisong Liu  
             <mailto:liuyisong@chinamobile.com>"
    "Editor:  Fangwei Hu  
             <mailto:hufwei@gmail.com>";

description
    "This YANG module defines a PIM (Protocol Independent Multicast) SM (Sparse Mode) model.

    Copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved.

    Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set

This version of this YANG module is part of RFC 9128; see the RFC itself for full legal notices.

revision 2022-10-19 {
    description "Initial revision.";
    reference "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)";
}

/* Features */

feature spt-switch-infinity {
    description "This feature indicates that the system supports the configuration choice of whether to trigger switchover from the RPT (Rendezvous Point Tree) to the SPT (Shortest Path Tree).";
    reference "RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.2";
}

feature spt-switch-policy {
    description "This feature indicates that the system supports configuring the policy for switchover from the RPT to the SPT.";
    reference "RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.2";
}

/* Identities */

identity rp-sm {
    base pim-rp:rp-mode;
    description "SM (Sparse Mode).";
}

/* Groupings */

grouping static-rp-sm-container {
    description "Grouping that contains SM attributes for static RPs.";
    container sm {
        presence "Indicates support for PIM-SM.";
    }
}
description
  "PIM-SM configuration data.";
  uses pim-rp:static-rp-attributes;
} // sm
} // static-rp-sm-container

/*
 * Configuration data nodes
 */

augment "/rt:routing/rt:control-plane-protocols/pim-base:pim/"
  + "pim-base:address-family" {
  description
  "PIM-SM augmentation.";
  container sm {
    description
    "PIM-SM configuration data.";
    container asm {
      description
      "ASM (Any-Source Multicast) attributes.";
      container anycast-rp {
        presence "Present to enable an Anycast-RP (Rendezvous Point).";
        description
        "Anycast-RP attributes.";
        list ipv4-anycast-rp {
          when "./.../.../pim-base:address-family = 'rt:ipv4'" {
            description
            "Only applicable to an IPv4 address family.";
          }
          key "anycast-address rp-address";
          description
          "A list of IPv4 Anycast-RP settings. Only applicable when 'pim-base:address-family' is IPv4.";
          leaf anycast-address {
            type inet:ipv4-address;
            description
            "IP address of the Anycast-RP set. This IP address is used by the multicast groups or sources to join or register.";
          }
          leaf rp-address {
            type inet:ipv4-address;
            description
            "IP address of the router configured with an Anycast-RP. This is the IP address where the Register messages are forwarded.";
          }
        }
        list ipv6-anycast-rp {
          when "./.../.../pim-base:address-family = 'rt:ipv6'" {
            description
            "Only applicable to an IPv6 address family.";
          }
          key "anycast-address rp-address";
          description
          "A list of IPv6 Anycast-RP settings. Only applicable when 'pim-base:address-family' is IPv6.";
        }
      }
    }
  }
}
leaf anycast-address {
  type inet:ipv6-address;
  description
      "IP address of the Anycast-RP set. This IP address
      is used by the multicast groups or sources to join
      or register.";
}
leaf rp-address {
  type inet:ipv6-address;
  description
      "IP address of the router configured with an
      Anycast-RP. This is the IP address where the
      Register messages are forwarded.";
}
}

container spt-switch {
  description
      "SPT (Shortest Path Tree) switching attributes.";
  container infinity {
    if-feature "spt-switch-infinity";
    presence "Present if the SPT switchover threshold is set
to infinity, according to the policy specified
below.";
    description
      "The receiver's DR (Designated Router) never triggers
      switchover from the RPT to the SPT.";
    leaf policy-name {
      if-feature "spt-switch-policy";
      type string;
      description
        "The string value is the name to uniquely identify a
        policy that contains one or more policy rules used
to accept or reject certain multicast groups.
The groups accepted by this policy have the SPT
switchover threshold set to infinity, meaning that
they will stay on the shared tree forever.
If a policy is not specified, the entire multicast
address space is accepted.
The definition of such a policy is outside the scope
of this document.";
    }
  } // infinity
} // asm

container ssm {
  presence "Present to enable SSM (Source-Specific
          Multicast).";
  description
      "SSM attributes.";
  leaf range-policy {
    type string;
    description
      "The string value is the name to uniquely identify a
      policy that contains one or more policy rules used
to accept or reject certain multicast groups.
The groups accepted by this policy define the multicast
group range used by SSM.";
6.4. PIM-DM Module

This module references [RFC3973] and [RFC8349].
<CODE BEGINS> file "ietf-pim-dm@2022-10-19.yang"

module ietf-pim-dm {
  yang-version 1.1;
  prefix pim-dm;

  import ietf-routing {
    prefix rt;
    reference
      "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)";
  }
  import ietf-pim-base {
    prefix pim-base;
    reference
      "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)";
  }

  organization
    "IETF PIM Working Group";
  contact
    "WG Web: <https://datatracker.ietf.org/wg/pim/>
    WG List: <mailto:pim@ietf.org>
    Editor: Xufeng Liu
      <mailto:xufeng.liu.ietf@gmail.com>
    Editor: Pete McAllister
      <mailto:pete.mcallister@metaswitch.com>
    Editor: Anish Peter
      <mailto:anish.ietf@gmail.com>
    Editor: Mahesh Sivakumar
      <mailto:sivakumar.mahesh@gmail.com>
    Editor: Yisong Liu
      <mailto:liuyisong@chinamobile.com>
    Editor: Fangwei Hu
      <mailto:hufwei@gmail.com>
  }

  description
    "This YANG module defines a PIM (Protocol Independent Multicast) DM (Dense Mode) model."

  copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved.

  Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to
  the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust’s Legal Provisions
  Relating to IETF Documents
This version of this YANG module is part of RFC 9128; see the RFC itself for full legal notices.

revision 2022-10-19 {
  description
  "Initial revision.";
  reference
  "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)";
}
/
*/
* Configuration data nodes */

augment "/rt:routing/rt:control-plane-protocols/
+ "pim-base:pim/pim-base:address-family" {
  description
  "PIM-DM augmentation.";
  container dm {
    presence "Present to enable PIM-DM.";
    description
    "PIM-DM configuration data.";
  } // dm
} // augment

augment "/rt:routing/rt:control-plane-protocols/
+ "pim-base:address-family" {
  description
  "PIM-DM augmentation to 'pim-base:interface'.";
  container dm {
    presence "Present to enable PIM-DM.";
    description
    "PIM-DM configuration data.";
  } // dm
} // augment

<CODE ENDS>

6.5. BIDIR-PIM Module

This module references [RFC5015], [RFC6991], [RFC8294], [RFC8343], and [RFC8349].

<CODE BEGINS> file "ietf-pim-bidir@2022-10-19.yang"

module ietf-pim-bidir {
  yang-version 1.1;
  prefix pim-bidir;

  import ietf-inet-types {
    prefix inet;
    reference

Liu, et al. Standards Track Page 71
import ietf-routing-types {
    prefix rt-types;
    reference
    "RFC 8294: Common YANG Data Types for the Routing Area";
}
import ietf-interfaces {
    prefix if;
    reference
    "RFC 8343: A YANG Data Model for Interface Management";
}
import ietf-routing {
    prefix rt;
    reference
    "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)";
}
import ietf-pim-base {
    prefix pim-base;
    reference
    "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)";
}
import ietf-pim-rp {
    prefix pim-rp;
    reference
    "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)";
}

organization
    "IETF PIM Working Group";
contact
    "WG Web: <https://datatracker.ietf.org/wg/pim/>
    WG List: <mailto:pim@ietf.org>
    Editor: Xufeng Liu
    <mailto:xufeng.liu.ietf@gmail.com>
    Editor: Pete McAllister
    <mailto:pete.mcallister@metaswitch.com>
    Editor: Anish Peter
    <mailto:anish.ietf@gmail.com>
    Editor: Mahesh Sivakumar
    <mailto:sivakumar.mahesh@gmail.com>
    Editor: Yisong Liu
    <mailto:liuyisong@chinamobile.com>
    Editor: Fangwei Hu
    <mailto:hufwei@gmail.com>

description
    "This YANG module defines a PIM (Protocol Independent Multicast) BIDIR (Bidirectional) mode model."
revision 2022-10-19 {
  description
    "Initial revision.";
  reference
    "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)";
}

/*! * Features */
feature intf-df-election {
  description
    "Supports configuration of interface DF election.";
  reference
    "RFC 5015: Bidirectional Protocol Independent Multicast (BIDIR-PIM), Section 3.5";
}

/*! * Identities */
identity rp-bidir {
  base pim-rp:rp-mode;
  description
    "BIDIR mode.";
}

identity df-state {
  description
    "DF (Designated Forwarder) election state type.";
  reference
    "RFC 5015: Bidirectional Protocol Independent Multicast (BIDIR-PIM)";
}

identity df-state-offer {
  base df-state;
  description
    "Initial election state. When in the Offer state, a router thinks it can eventually become the winner and periodically generates Offer messages.";
}
identity df-state-lose {
    base df-state;
    description
    "Either (1) there is a different election winner or
    (2) no router on the link has a path to the RPA 
    (Rendezvous Point Address).";
}

identity df-state-win {
    base df-state;
    description
    "The router is the acting DF without any contest.";
}

identity df-state-backoff {
    base df-state;
    description
    "The router is the acting DF, but another router has made a 
    bid to take over.";
}

grouping static-rp-bidir-container {
    description
    "Grouping that contains BIDIR attributes for a static RP 
    (Rendezvous Point).";
    container bidir {
        presence "Indicates support for BIDIR mode.";
        description
        "PIM-BIDIR configuration data.";
        uses pim-rp:static-rp-attributes;
    } // bidir
} // static-rp-bidir-container

grouping interface-df-election-state-attributes {
    description
    "Grouping that contains the state attributes of a DF election 
    on an interface.";
    leaf interface-state {
        type identityref {
            base df-state;
        }
        description
        "Interface state with respect to the DF election.";
    }
    leaf up-time {
        type rt-types:timeticks64;
        description
        "The number of time ticks (hundredths of a second) since the 
        current DF has been elected as the winner.";
    }
    leaf winner-metric {
        type uint32;
        description
“The unicast routing metric used by the DF to reach the RP. The value is announced by the DF.”;
}
leaf winner-metric-preference {
  type uint32;
  description
  "The preference value assigned to the unicast routing protocol that the DF used to obtain the route to the RP. The value is announced by the DF.”;
}
} // interface-df-election-state-attributes

/*
 * Configuration data and operational state data nodes
 */

augment "/rt:routing/rt:control-plane-protocols/"
  + "pim-base:pim/pim-base:address-family" {
    description
    "PIM-BIDIR augmentation.”;
    container bidir {
      presence "Present to enable BIDIR mode.”;
      description
      "PIM-BIDIR configuration data.”;
    } // bidir
  } // augment

augment "/rt:routing/rt:control-plane-protocols/"
  + "pim-base:address-family" {
    description
    "PIM-BIDIR augmentation.”;
    container bidir {
      presence "Present to enable BIDIR mode.”;
      description
      "PIM-BIDIR configuration data.”;
      container df-election {
        if-feature "intf-df-election";
        description
        "DF election attributes.”;
        leaf offer-interval {
          type uint16;
          units "milliseconds";
          default "100"
          description
          "Offer interval. Specifies the interval between repeated DF election messages.”;
        }
        leaf backoff-interval {
          type uint16;
          units "milliseconds";
          default "1000"
          description
          "This is the interval that the acting DF waits between receiving a better DF Offer and sending the Pass message to transfer DF responsibility.”;
        }
        leaf offer-multiplier {
          type uint32;
          description
          "The preference value assigned to the unicast routing protocol that the DF used to obtain the route to the RP. The value is announced by the DF.”;
        }
      }
    }
  } // augment
type,uint8;
default,"3";
description
"This is the number of transmission attempts for
DF election messages.
When a DF election Offer or Winner message fails to be
received, the message is retransmitted.
'offer-multiplier' sets the minimum number of DF
election messages that must fail to be received for DF
election to fail.
If a router receives from a neighbor a better offer than
its own, the router stops participating in the election
for a period of 'offer-multiplier' * 'offer-interval'.
Eventually, all routers except the best candidate stop
sending Offer messages.";
}
} // df-election
} // bidir
} // augment

augment "/rt:routing/rt:control-plane-protocols/
+ "pim-base:pim/pim-base:address-family/pim-rp:rp/"
+ "pim-rp:static-rp/pim-rp:ipv4-rp"
{ description
"PIM-BIDIR augmentation.";
uses static-rp-bidir-container;
} // augment

augment "/rt:routing/rt:control-plane-protocols/
+ "pim-base:pim/pim-base:address-family/pim-rp:rp/"
+ "pim-rp:static-rp/pim-rp:ipv6-rp"
{ description
"PIM-BIDIR augmentation.";
uses static-rp-bidir-container;
} // augment

/*
 * Operational state data nodes
 */

augment "/rt:routing/rt:control-plane-protocols/
+ "pim-base:pim/pim-base:address-family/pim-rp:rp"
{ description
"PIM-BIDIR augmentation to RP state data.";
container bidir
config false;
description
"PIM-BIDIR state data.";
container df-election
description
"DF election data.";
list ipv4-rp
when "../../../../pim-base:address-family = 'rt:ipv4'"
{ description
"Only applicable to an IPv4 address family.";
}
key "rp-address";
description
"This is the number of transmission attempts for
DF election messages.
When a DF election Offer or Winner message fails to be
received, the message is retransmitted.
'offer-multiplier' sets the minimum number of DF
election messages that must fail to be received for DF
election to fail.
If a router receives from a neighbor a better offer than
its own, the router stops participating in the election
for a period of 'offer-multiplier' * 'offer-interval'.
Eventually, all routers except the best candidate stop
sending Offer messages.";
"A list of IPv4 RP addresses.";
leaf rp-address {
  type inet:ipv4-address;
  description
  "The address of the RP.";
}
} // ipv4-rp
list ipv6-rp {
  when "../../../../pim-base:address-family = 'rt:ipv6'" {
    description
    "Only applicable to an IPv6 address family.";
  }
  key "rp-address";
  description
  "A list of IPv6 RP addresses.";
  leaf rp-address {
    type inet:ipv6-address;
    description
    "The address of the RP.";
  }
} // ipv6-rp
} // df-election
container interface-df-election {
  description
  "Interface DF election data.";
  list ipv4-rp {
    when "../../../../pim-base:address-family = 'rt:ipv4'" {
      description
      "Only applicable to an IPv4 address family.";
    }
    key "rp-address interface-name";
    description
    "A list of IPv4 RP addresses.";
    leaf rp-address {
      type inet:ipv4-address;
      description
      "The address of the RP.";
    }
    leaf interface-name {
      type if:interface-ref;
      description
      "The name of the interface for which the DF state is
      being maintained.";
    }
    leaf df-address {
      type inet:ipv4-address;
      description
      "The address of the elected DF, which is the winner of
      the DF election process.";
    }
    uses interface-df-election-state-attributes;
  } // ipv4-rp
  list ipv6-rp {
    when "../../../../pim-base:address-family = 'rt:ipv6'" {
      description
      "Only applicable to an IPv6 address family.";
    }
    key "rp-address interface-name";
description
  "A list of IPv6 RP addresses."
leaf rp-address {
  type inet:ipv6-address;
  description
    "The address of the RP.";
}
leaf interface-name {
  type if:interface-ref;
  description
    "The name of the interface for which the DF state is being maintained.";
}
leaf df-address {
  type inet:ipv6-address;
  description
    "DF address.";
} uses interface-df-election-state-attributes;
} // ipv6-rp
} // interface-df-election
}
} // augment

augment "/rt:routing/rt:control-plane-protocols/
  + "pim-base:address-family/pim-base:neighbors/" 
  + "pim-base:ipv4-neighbor" {
  description
    "PIM-BIDIR augmentation to the IPv4 neighbor state data.";
  leaf bidir-capable {
    type boolean;
    description
      "'true' if the neighbor is using the Bidirectional Capable option in the last Hello message.";
  }
} // augment

augment "/rt:routing/rt:control-plane-protocols/
  + "pim-base:address-family/pim-base:neighbors/" 
  + "pim-base:ipv6-neighbor" {
  description
    "PIM-BIDIR augmentation to the IPv6 neighbor state data.";
  leaf bidir-capable {
    type boolean;
    description
      "'true' if the neighbor is using the Bidirectional Capable option in the last Hello message.";
  }
} // augment
7. Security Considerations

The YANG modules specified in this document define a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in these YANG modules that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:

- **pim-base:graceful-restart**
  This subtree specifies the configuration for PIM graceful restart at the global level on a device. Modifying the configuration can cause temporary interruption to the multicast routing during restart.

- **pim-base:address-family/pim-base:graceful-restart**
  This subtree specifies the per-address-family configuration for PIM graceful restart on a device. Modifying the configuration can cause temporary interruption to the multicast routing during restart.

- **pim-base:address-family/pim-rp:pim-rp:rp**
  This subtree specifies the configuration for the PIM Rendezvous Point (RP) on a device. Modifying the configuration can cause RP malfunctions.

- **pim-base:address-family/pim-sm:sm**
  This subtree specifies the configuration for PIM Sparse Mode (PIM-SM) on a device. Modifying the configuration can cause multicast traffic to be disabled or rerouted in PIM-SM.

- **pim-base:address-family/pim-dm:dm**
  This subtree specifies the configuration for PIM Dense Mode (PIM-DM) on a device. Modifying the configuration can cause multicast traffic to be disabled or rerouted in PIM-DM.

- **pim-base:address-family/pim-bidir:bidir**
  This subtree specifies the configuration for PIM Bidirectional Mode (BIDIR-PIM) on a device. Modifying the configuration can cause multicast traffic to be disabled or rerouted in BIDIR-PIM.
pim-base:interfaces

This subtree specifies the configuration for the PIM interfaces on a device. Modifying the configuration can cause the PIM protocol to get insufficient or incorrect information.

These subtrees are all under "/rt:routing/rt:control-plane-protocols/pim-base:pim".

Unauthorized access to any data node of these subtrees can adversely affect the multicast routing subsystem of both the local device and the network. This may lead to network malfunctions, delivery of packets to inappropriate destinations, and other problems.

Some of the readable data nodes in these YANG modules may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:

/rt:routing/rt:control-plane-protocols/pim-base:pim

Unauthorized access to any data node of the above subtree can disclose the operational state information of PIM on this device.

8. IANA Considerations

IANA has registered the following namespace URIs in the "IETF XML Registry" [RFC3688]:

Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
IANA has registered the following YANG modules in the "Yang Module Names" registry [RFC6020]:

Name: ietf-pim-base
Prefix: pim-base
Reference: RFC 9128

Name: ietf-pim-bidir
Prefix: pim-bidir
Reference: RFC 9128

Name: ietf-pim-bidir
Prefix: pim-bidir
Reference: RFC 9128

Name: ietf-pim-rp
Prefix: pim-rp
Reference: RFC 9128

Name: ietf-pim-sm
Prefix: pim-sm
Reference: RFC 9128

9. References

9.1. Normative References


9.2. Informative References


Appendix A. Data Tree Example

This appendix contains an example of an instance data tree, in JSON encoding [RFC7951], containing both configuration data and state data.

The configuration instance data tree for Router R3 in the above figure could be as follows:

```json
{
 "ietf-interfaces:interfaces": {
 "interface": [
 {
 "name": "lo0",
 "description": "R3 loopback interface.",
 "type": "iana-if-type:softwareLoopback",
 "ietf-ip:ipv6": {
 "address": [
 {
 "ip": "2001:db8:0:300::1",
 "prefix-length": 64
 }
]
 }
 },
 {
 "name": "eth30",
 "description": "An interface connected to the receiver."
 }
]
 }
}
```
"type": "iana-if-type:ethernetCsmacd",
"ietf-ip:ipv6": {
  "forwarding": true
}
},

{"name": "eth32",
 "description": "An interface connected to the RP (R2).",
 "type": "iana-if-type:ethernetCsmacd",
 "ietf-ip:ipv6": {
  "forwarding": true
}
},
}
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
The corresponding operational state data for Router R3 could be as follows:

```json
{
 "ietf-interfaces:interfaces": {
 "interface": [
 {
 "name": "lo0",
 "description": "R3 loopback interface.",
 "type": "iana-if-type:softwareLoopback",
 "phys-address": "00:00:5e:00:53:03",
 "oper-status": "up",
 "statistics": {
 "discontinuity-time": "2018-01-23T12:34:56-05:00"
 },
 "ietf-ip:ipv6": {
 "mtu": 1500,
 "address": [
 {
 "ip": "2001:db8:0:300::1",
 "prefix-length": 64,
 "origin": "static",
 "status": "preferred"
 },
 {
 "ip": "fe80::200:5eff:fe00:5303",
 "prefix-length": 64,
 "origin": "link-layer",
 "status": "preferred"
 }
]
 }
 },
 {
 "name": "eth30",
 "description": "An interface connected to the receiver.",
 "type": "iana-if-type:ethernetCsmacd",
 "phys-address": "00:00:5e:00:53:30",
 "address-family": [
 {
 "address-family": "ietf-routing:ipv6",
 "ietf-pim-sm:sm": {
 }
 }
]
 }
]
 }
}
```
"oper-status": "up",
"statistics": {
  "discontinuity-time": "2018-01-23T12:34:56-05:00"
},
"ietf-ip:ipv6": {
  "forwarding": true,
  "mtu": 1500,
  "address": [
    {
      "ip": "fe80::200:5eff:fe00:5330",
      "prefix-length": 64,
      "origin": "link-layer",
      "status": "preferred"
    }
  ],
  "neighbor": []
},
"name": "eth32",
"description": "An interface connected to the RP (R2).",
"type": "iana-if-type:ethernetCsmacd",
"phys-address": "00:00:5e:00:53:32",
"oper-status": "up",
"statistics": {
  "discontinuity-time": "2018-01-23T12:34:56-05:00"
},
"ietf-ip:ipv6": {
  "forwarding": true,
  "mtu": 1500,
  "address": [
    {
      "ip": "fe80::200:5eff:fe00:5332",
      "prefix-length": 64,
      "origin": "link-layer",
      "status": "preferred"
    }
  ],
  "neighbor": [
    {
      "ip": "fe80::200:5eff:fe00:5323",
      "link-layer-address": "00:00:5e:00:53:23",
      "origin": "dynamic",
      "is-router": [null],
      "state": "reachable"
    }
  ]
},
"ietf-routing:routing": {
  "router-id": "203.0.113.1",
  "interfaces": {
    "interface": [
      "lo0",
      "eth30",
      "eth32",
      "eth34"
    ]
  }
}
"eth32"
},
"control-plane-protocols": {
  "ietf-pim-base:pim": {
    "address-family": [
    {
      "address-family": "ietf-routing:ipv6",
      "statistics": {
        "discontinuity-time": "2018-01-23T12:34:56-05:00"
      },
      "topology-tree-info": {
        "ipv6-route": [
          {
            "group": "ff06::1",
            "source-address": "*",
            "is-rpt": true,
            "expiration": 16,
            "incoming-interface": "eth32",
            "is-spt": false,
            "mode": "pim-asm",
            "msdp-learned": false,
            "rp-address": "2001:db8:2:200::1",
            "rpf-neighbor": "fe80::200:5eff:fe00:5323",
            "up-time": 123400,
            "outgoing-interface": [
              {
                "name": "eth30",
                "expiration": 36,
                "up-time": 223400,
                "jp-state": "join"
              }
            ]
          },
          {
            "group": "ff06::1",
            "source-address": "2001:db8:1:1::100",
            "is-rpt": false,
            "expiration": 8,
            "incoming-interface": "eth32",
            "is-spt": true,
            "mode": "pim-asm",
            "msdp-learned": false,
            "rp-address": "2001:db8:0:200::1",
            "rpf-neighbor": "fe80::200:5eff:fe00:5323",
            "up-time": 5200,
            "outgoing-interface": [
              {
                "name": "eth30",
                "expiration": 6,
                "up-time": 5600,
                "jp-state": "join"
              }
            ]
          }
        ]
      }
    }
  }
}
"ietf-pim-rp:rp": {
}
"static-rp": {
    "ipv6-rp": [
    {
      "rp-address": "2001:db8:0:200::1",
      "ietf-pim-sm:sm": {
      }
    }
    ],
},
"rp-list": {
    "ipv6-rp": [
    {
      "rp-address": "2001:db8:0:200::1",
      "mode": "ietf-pim-sm:rp-sm",
      "info-source-type": "static",
      "up-time": 323400,
      "expiration": "not-set"
    }
    ],
},
"rp-mappings": {
    "ipv6-rp": [
    {
      "group-range": "ff06::1/128",
      "rp-address": "2001:db8:0:200::1",
      "up-time": 123400,
      "expiration": "36"
    }
    ]
},
"interfaces": {
    "interface": [
    {
      "name": "lo0",
      "address-family": [
      {
        "address-family": "ietf-routing:ipv6",
        "hello-interval": "infinity",
        "ietf-pim-sm:sm": {
        }
      },
      "oper-status": "up",
      "gen-id": 103689,
      "hello-expiration": "infinity",
      "ipv6": {
        "address": [
        "fe80::200:5eff:fe00:5303"
        ],
        "dr-address": "fe80::200:5eff:fe00:5303"
      },
      "neighbors": {
        "ipv6-neighbor": [        ]
      }
    }
    ]
}


```
{
 "name": "eth30",
 "address-family": [
 {
 "address-family": "ietf-routing:ipv6",
 "ietf-pim-sm:sm": {
 },
 "oper-status": "up",
 "gen-id": 203689,
 "hello-expiration": 18,
 "ipv6": {
 "address": [
 "fe80::200:5eff:fe00:5330"
],
 "dr-address": "fe80::200:5eff:fe00:5330"
 },
 "neighbors": {
 "ipv6-neighbor": [
]
 }
 }
],
},
{
 "name": "eth32",
 "address-family": [
 {
 "address-family": "ietf-routing:ipv6",
 "ietf-pim-sm:sm": {
 },
 "oper-status": "up",
 "gen-id": 303689,
 "hello-expiration": 21,
 "ipv6": {
 "address": [
 "fe80::200:5eff:fe00:5332"
],
 "dr-address": "fe80::200:5eff:fe00:5332"
 },
 "neighbors": {
 "ipv6-neighbor": [
 {
 "address": "fe80::200:5eff:fe00:5323",
 "expiration": 28,
 "dr-priority": 1,
 "gen-id": 102,
 "lan-prune-delay": {
 "present": false
 },
 "up-time": 323500
 }
]
 }
 }
]
}
```
Acknowledgments

The authors would like to thank Steve Baillargeon, Feng Guo, Robert Kebler, Tanmoy Kundu, and Stig Venaas for their valuable contributions.

Authors' Addresses

**Xufeng Liu**
IBM Corporation  
2300 Dulles Station Blvd.  
Herndon, VA 20171  
United States of America  
Email: xufeng.liu.ietf@gmail.com

**Pete McAllister**
Metaswitch Networks  
100 Church Street  
Enfield  
EN2 6BQ  
United Kingdom  
Email: pete.mcallister@metaswitch.com

**Anish Peter**
Individual  
Email: anish.ietf@gmail.com

**Mahesh Sivakumar**
Juniper Networks  
1133 Innovation Way  
Sunnyvale, California  
United States of America  
Email: sivakumar.mahesh@gmail.com
Yisong Liu  
China Mobile  
China Mobile Innovation Building  
32 Xuanwumen West Street  
Beijing  
100053  
China  
Email: liuyisong@chinamobile.com

Fangwei Hu  
Individual Contributor  
86 Bohang Road  
Shanghai  
Shanghai, 200126  
China  
Email: hufwei@gmail.com