[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]
Obsoleted by: 8439 INFORMATIONAL
Errata ExistInternet Research Task Force (IRTF) Y. Nir
Request for Comments: 7539 Check Point
Category: Informational A. Langley
ISSN: 2070-1721 Google, Inc.
May 2015
ChaCha20 and Poly1305 for IETF Protocols
Abstract
This document defines the ChaCha20 stream cipher as well as the use
of the Poly1305 authenticator, both as stand-alone algorithms and as
a "combined mode", or Authenticated Encryption with Associated Data
(AEAD) algorithm.
This document does not introduce any new crypto, but is meant to
serve as a stable reference and an implementation guide. It is a
product of the Crypto Forum Research Group (CFRG).
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Research Task Force
(IRTF). The IRTF publishes the results of Internet-related research
and development activities. These results might not be suitable for
deployment. This RFC represents the consensus of the Crypto Forum
Research Group of the Internet Research Task Force (IRTF). Documents
approved for publication by the IRSG are not a candidate for any
level of Internet Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7539.
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Nir & Langley Informational [Page 1]
RFC 7539 ChaCha20 & Poly1305 May 2015
Table of Contents
1. Introduction ....................................................3
1.1. Conventions Used in This Document ..........................4
2. The Algorithms ..................................................4
2.1. The ChaCha Quarter Round ...................................4
2.1.1. Test Vector for the ChaCha Quarter Round ............5
2.2. A Quarter Round on the ChaCha State ........................5
2.2.1. Test Vector for the Quarter Round on the
ChaCha State ........................................6
2.3. The ChaCha20 Block Function ................................6
2.3.1. The ChaCha20 Block Function in Pseudocode ...........8
2.3.2. Test Vector for the ChaCha20 Block Function .........9
2.4. The ChaCha20 Encryption Algorithm .........................10
2.4.1. The ChaCha20 Encryption Algorithm in Pseudocode ....11
2.4.2. Example and Test Vector for the ChaCha20 Cipher ....11
2.5. The Poly1305 Algorithm ....................................13
2.5.1. The Poly1305 Algorithms in Pseudocode ..............15
2.5.2. Poly1305 Example and Test Vector ...................15
2.6. Generating the Poly1305 Key Using ChaCha20 ................17
2.6.1. Poly1305 Key Generation in Pseudocode ..............18
2.6.2. Poly1305 Key Generation Test Vector ................18
2.7. A Pseudorandom Function for Crypto Suites based on
ChaCha/Poly1305 ...........................................18
2.8. AEAD Construction .........................................19
2.8.1. Pseudocode for the AEAD Construction ...............21
2.8.2. Example and Test Vector for
AEAD_CHACHA20_POLY1305 .............................22
3. Implementation Advice ..........................................24
4. Security Considerations ........................................24
5. IANA Considerations ............................................26
6. References .....................................................26
6.1. Normative References ......................................26
6.2. Informative References ....................................26
Appendix A. Additional Test Vectors ...............................29
A.1. The ChaCha20 Block Functions ...............................29
A.2. ChaCha20 Encryption ........................................32
A.3. Poly1305 Message Authentication Code .......................34
A.4. Poly1305 Key Generation Using ChaCha20 .....................40
A.5. ChaCha20-Poly1305 AEAD Decryption ..........................41
Appendix B. Performance Measurements of ChaCha20 ..................44
Acknowledgements ..................................................45
Authors' Addresses ................................................45
Nir & Langley Informational [Page 2]
RFC 7539 ChaCha20 & Poly1305 May 2015
1. Introduction
The Advanced Encryption Standard (AES -- [FIPS-197]) has become the
gold standard in encryption. Its efficient design, widespread
implementation, and hardware support allow for high performance in
many areas. On most modern platforms, AES is anywhere from four to
ten times as fast as the previous most-used cipher, Triple Data
Encryption Standard (3DES -- [SP800-67]), which makes it not only the
best choice, but the only practical choice.
There are several problems with this. If future advances in
cryptanalysis reveal a weakness in AES, users will be in an
unenviable position. With the only other widely supported cipher
being the much slower 3DES, it is not feasible to reconfigure
deployments to use 3DES. [Standby-Cipher] describes this issue and
the need for a standby cipher in greater detail. Another problem is
that while AES is very fast on dedicated hardware, its performance on
platforms that lack such hardware is considerably lower. Yet another
problem is that many AES implementations are vulnerable to cache-
collision timing attacks ([Cache-Collisions]).
This document provides a definition and implementation guide for
three algorithms:
1. The ChaCha20 cipher. This is a high-speed cipher first described
in [ChaCha]. It is considerably faster than AES in software-only
implementations, making it around three times as fast on
platforms that lack specialized AES hardware. See Appendix B for
some hard numbers. ChaCha20 is also not sensitive to timing
attacks (see the security considerations in Section 4). This
algorithm is described in Section 2.4
2. The Poly1305 authenticator. This is a high-speed message
authentication code. Implementation is also straightforward and
easy to get right. The algorithm is described in Section 2.5.
3. The CHACHA20-POLY1305 Authenticated Encryption with Associated
Data (AEAD) construction, described in Section 2.8.
This document does not introduce these new algorithms for the first
time. They have been defined in scientific papers by
D. J. Bernstein, which are referenced by this document. The purpose
of this document is to serve as a stable reference for IETF documents
making use of these algorithms.
These algorithms have undergone rigorous analysis. Several papers
discuss the security of Salsa and ChaCha ([LatinDances],
[LatinDances2], [Zhenqing2012]).
Nir & Langley Informational [Page 3]
RFC 7539 ChaCha20 & Poly1305 May 2015
This document represents the consensus of the Crypto Forum Research
Group (CFRG).
1.1. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
The description of the ChaCha algorithm will at various time refer to
the ChaCha state as a "vector" or as a "matrix". This follows the
use of these terms in Professor Bernstein's paper. The matrix
notation is more visually convenient and gives a better notion as to
why some rounds are called "column rounds" while others are called
"diagonal rounds". Here's a diagram of how the matrices relate to
vectors (using the C language convention of zero being the index
origin).
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
The elements in this vector or matrix are 32-bit unsigned integers.
The algorithm name is "ChaCha". "ChaCha20" is a specific instance
where 20 "rounds" (or 80 quarter rounds -- see Section 2.1) are used.
Other variations are defined, with 8 or 12 rounds, but in this
document we only describe the 20-round ChaCha, so the names "ChaCha"
and "ChaCha20" will be used interchangeably.
2. The Algorithms
The subsections below describe the algorithms used and the AEAD
construction.
2.1. The ChaCha Quarter Round
The basic operation of the ChaCha algorithm is the quarter round. It
operates on four 32-bit unsigned integers, denoted a, b, c, and d.
The operation is as follows (in C-like notation):
1. a += b; d ^= a; d <<<= 16;
2. c += d; b ^= c; b <<<= 12;
3. a += b; d ^= a; d <<<= 8;
4. c += d; b ^= c; b <<<= 7;
Nir & Langley Informational [Page 4]
RFC 7539 ChaCha20 & Poly1305 May 2015
Where "+" denotes integer addition modulo 2^32, "^" denotes a bitwise
Exclusive OR (XOR), and "<<< n" denotes an n-bit left rotation
(towards the high bits).
For example, let's see the add, XOR, and roll operations from the
fourth line with sample numbers:
o a = 0x11111111
o b = 0x01020304
o c = 0x77777777
o d = 0x01234567
o c = c + d = 0x77777777 + 0x01234567 = 0x789abcde
o b = b ^ c = 0x01020304 ^ 0x789abcde = 0x7998bfda
o b = b <<< 7 = 0x7998bfda <<< 7 = 0xcc5fed3c
2.1.1. Test Vector for the ChaCha Quarter Round
For a test vector, we will use the same numbers as in the example,
adding something random for c.
o a = 0x11111111
o b = 0x01020304
o c = 0x9b8d6f43
o d = 0x01234567
After running a Quarter Round on these four numbers, we get these:
o a = 0xea2a92f4
o b = 0xcb1cf8ce
o c = 0x4581472e
o d = 0x5881c4bb
2.2. A Quarter Round on the ChaCha State
The ChaCha state does not have four integer numbers: it has 16. So
the quarter-round operation works on only four of them -- hence the
name. Each quarter round operates on four predetermined numbers in
the ChaCha state. We will denote by QUARTERROUND(x,y,z,w) a quarter-
round operation on the numbers at indices x, y, z, and w of the
ChaCha state when viewed as a vector. For example, if we apply
QUARTERROUND(1,5,9,13) to a state, this means running the quarter-
round operation on the elements marked with an asterisk, while
leaving the others alone:
0 *a 2 3
4 *b 6 7
8 *c 10 11
12 *d 14 15
Nir & Langley Informational [Page 5]
RFC 7539 ChaCha20 & Poly1305 May 2015
Note that this run of quarter round is part of what is called a
"column round".
2.2.1. Test Vector for the Quarter Round on the ChaCha State
For a test vector, we will use a ChaCha state that was generated
randomly:
Sample ChaCha State
879531e0 c5ecf37d 516461b1 c9a62f8a
44c20ef3 3390af7f d9fc690b 2a5f714c
53372767 b00a5631 974c541a 359e9963
5c971061 3d631689 2098d9d6 91dbd320
We will apply the QUARTERROUND(2,7,8,13) operation to this state.
For obvious reasons, this one is part of what is called a "diagonal
round":
After applying QUARTERROUND(2,7,8,13)
879531e0 c5ecf37d *bdb886dc c9a62f8a
44c20ef3 3390af7f d9fc690b *cfacafd2
*e46bea80 b00a5631 974c541a 359e9963
5c971061 *ccc07c79 2098d9d6 91dbd320
Note that only the numbers in positions 2, 7, 8, and 13 changed.
2.3. The ChaCha20 Block Function
The ChaCha block function transforms a ChaCha state by running
multiple quarter rounds.
The inputs to ChaCha20 are:
o A 256-bit key, treated as a concatenation of eight 32-bit little-
endian integers.
o A 96-bit nonce, treated as a concatenation of three 32-bit little-
endian integers.
o A 32-bit block count parameter, treated as a 32-bit little-endian
integer.
The output is 64 random-looking bytes.
Nir & Langley Informational [Page 6]
RFC 7539 ChaCha20 & Poly1305 May 2015
The ChaCha algorithm described here uses a 256-bit key. The original
algorithm also specified 128-bit keys and 8- and 12-round variants,
but these are out of scope for this document. In this section, we
describe the ChaCha block function.
Note also that the original ChaCha had a 64-bit nonce and 64-bit
block count. We have modified this here to be more consistent with
recommendations in Section 3.2 of [RFC5116]. This limits the use of
a single (key,nonce) combination to 2^32 blocks, or 256 GB, but that
is enough for most uses. In cases where a single key is used by
multiple senders, it is important to make sure that they don't use
the same nonces. This can be assured by partitioning the nonce space
so that the first 32 bits are unique per sender, while the other 64
bits come from a counter.
The ChaCha20 state is initialized as follows:
o The first four words (0-3) are constants: 0x61707865, 0x3320646e,
0x79622d32, 0x6b206574.
o The next eight words (4-11) are taken from the 256-bit key by
reading the bytes in little-endian order, in 4-byte chunks.
o Word 12 is a block counter. Since each block is 64-byte, a 32-bit
word is enough for 256 gigabytes of data.
o Words 13-15 are a nonce, which should not be repeated for the same
key. The 13th word is the first 32 bits of the input nonce taken
as a little-endian integer, while the 15th word is the last 32
bits.
cccccccc cccccccc cccccccc cccccccc
kkkkkkkk kkkkkkkk kkkkkkkk kkkkkkkk
kkkkkkkk kkkkkkkk kkkkkkkk kkkkkkkk
bbbbbbbb nnnnnnnn nnnnnnnn nnnnnnnn
c=constant k=key b=blockcount n=nonce
ChaCha20 runs 20 rounds, alternating between "column rounds" and
"diagonal rounds". Each round consists of four quarter-rounds, and
they are run as follows. Quarter rounds 1-4 are part of a "column"
round, while 5-8 are part of a "diagonal" round:
1. QUARTERROUND ( 0, 4, 8,12)
2. QUARTERROUND ( 1, 5, 9,13)
3. QUARTERROUND ( 2, 6,10,14)
4. QUARTERROUND ( 3, 7,11,15)
5. QUARTERROUND ( 0, 5,10,15)
Nir & Langley Informational [Page 7]
RFC 7539 ChaCha20 & Poly1305 May 2015
6. QUARTERROUND ( 1, 6,11,12)
7. QUARTERROUND ( 2, 7, 8,13)
8. QUARTERROUND ( 3, 4, 9,14)
At the end of 20 rounds (or 10 iterations of the above list), we add
the original input words to the output words, and serialize the
result by sequencing the words one-by-one in little-endian order.
Note: "addition" in the above paragraph is done modulo 2^32. In some
machine languages, this is called carryless addition on a 32-bit
word.
2.3.1. The ChaCha20 Block Function in Pseudocode
Note: This section and a few others contain pseudocode for the
algorithm explained in a previous section. Every effort was made for
the pseudocode to accurately reflect the algorithm as described in
the preceding section. If a conflict is still present, the textual
explanation and the test vectors are normative.
inner_block (state):
Qround(state, 0, 4, 8,12)
Qround(state, 1, 5, 9,13)
Qround(state, 2, 6,10,14)
Qround(state, 3, 7,11,15)
Qround(state, 0, 5,10,15)
Qround(state, 1, 6,11,12)
Qround(state, 2, 7, 8,13)
Qround(state, 3, 4, 9,14)
end
chacha20_block(key, counter, nonce):
state = constants | key | counter | nonce
working_state = state
for i=1 upto 10
inner_block(working_state)
end
state += working_state
return serialize(state)
end
Nir & Langley Informational [Page 8]
RFC 7539 ChaCha20 & Poly1305 May 2015
2.3.2. Test Vector for the ChaCha20 Block Function
For a test vector, we will use the following inputs to the ChaCha20
block function:
o Key = 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10:11:12:13:
14:15:16:17:18:19:1a:1b:1c:1d:1e:1f. The key is a sequence of
octets with no particular structure before we copy it into the
ChaCha state.
o Nonce = (00:00:00:09:00:00:00:4a:00:00:00:00)
o Block Count = 1.
After setting up the ChaCha state, it looks like this:
ChaCha state with the key setup.
61707865 3320646e 79622d32 6b206574
03020100 07060504 0b0a0908 0f0e0d0c
13121110 17161514 1b1a1918 1f1e1d1c
00000001 09000000 4a000000 00000000
After running 20 rounds (10 column rounds interleaved with 10
"diagonal rounds"), the ChaCha state looks like this:
ChaCha state after 20 rounds
837778ab e238d763 a67ae21e 5950bb2f
c4f2d0c7 fc62bb2f 8fa018fc 3f5ec7b7
335271c2 f29489f3 eabda8fc 82e46ebd
d19c12b4 b04e16de 9e83d0cb 4e3c50a2
Finally, we add the original state to the result (simple vector or
matrix addition), giving this:
ChaCha state at the end of the ChaCha20 operation
e4e7f110 15593bd1 1fdd0f50 c47120a3
c7f4d1c7 0368c033 9aaa2204 4e6cd4c3
466482d2 09aa9f07 05d7c214 a2028bd9
d19c12b5 b94e16de e883d0cb 4e3c50a2
Nir & Langley Informational [Page 9]
RFC 7539 ChaCha20 & Poly1305 May 2015
After we serialize the state, we get this:
Serialized Block:
000 10 f1 e7 e4 d1 3b 59 15 50 0f dd 1f a3 20 71 c4 .....;Y.P.... q.
016 c7 d1 f4 c7 33 c0 68 03 04 22 aa 9a c3 d4 6c 4e ....3.h.."....lN
032 d2 82 64 46 07 9f aa 09 14 c2 d7 05 d9 8b 02 a2 ..dF............
048 b5 12 9c d1 de 16 4e b9 cb d0 83 e8 a2 50 3c 4e ......N......P<N
2.4. The ChaCha20 Encryption Algorithm
ChaCha20 is a stream cipher designed by D. J. Bernstein. It is a
refinement of the Salsa20 algorithm, and it uses a 256-bit key.
ChaCha20 successively calls the ChaCha20 block function, with the
same key and nonce, and with successively increasing block counter
parameters. ChaCha20 then serializes the resulting state by writing
the numbers in little-endian order, creating a keystream block.
Concatenating the keystream blocks from the successive blocks forms a
keystream. The ChaCha20 function then performs an XOR of this
keystream with the plaintext. Alternatively, each keystream block
can be XORed with a plaintext block before proceeding to create the
next block, saving some memory. There is no requirement for the
plaintext to be an integral multiple of 512 bits. If there is extra
keystream from the last block, it is discarded. Specific protocols
MAY require that the plaintext and ciphertext have certain length.
Such protocols need to specify how the plaintext is padded and how
much padding it receives.
The inputs to ChaCha20 are:
o A 256-bit key
o A 32-bit initial counter. This can be set to any number, but will
usually be zero or one. It makes sense to use one if we use the
zero block for something else, such as generating a one-time
authenticator key as part of an AEAD algorithm.
o A 96-bit nonce. In some protocols, this is known as the
Initialization Vector.
o An arbitrary-length plaintext
The output is an encrypted message, or "ciphertext", of the same
length.
Nir & Langley Informational [Page 10]
RFC 7539 ChaCha20 & Poly1305 May 2015
Decryption is done in the same way. The ChaCha20 block function is
used to expand the key into a keystream, which is XORed with the
ciphertext giving back the plaintext.
2.4.1. The ChaCha20 Encryption Algorithm in Pseudocode
chacha20_encrypt(key, counter, nonce, plaintext):
for j = 0 upto floor(len(plaintext)/64)-1
key_stream = chacha20_block(key, counter+j, nonce)
block = plaintext[(j*64)..(j*64+63)]
encrypted_message += block ^ key_stream
end
if ((len(plaintext) % 64) != 0)
j = floor(len(plaintext)/64)
key_stream = chacha20_block(key, counter+j, nonce)
block = plaintext[(j*64)..len(plaintext)-1]
encrypted_message += (block^key_stream)[0..len(plaintext)%64]
end
return encrypted_message
end
2.4.2. Example and Test Vector for the ChaCha20 Cipher
For a test vector, we will use the following inputs to the ChaCha20
block function:
o Key = 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10:11:12:13:
14:15:16:17:18:19:1a:1b:1c:1d:1e:1f.
o Nonce = (00:00:00:00:00:00:00:4a:00:00:00:00).
o Initial Counter = 1.
We use the following for the plaintext. It was chosen to be long
enough to require more than one block, but not so long that it would
make this example cumbersome (so, less than 3 blocks):
Plaintext Sunscreen:
000 4c 61 64 69 65 73 20 61 6e 64 20 47 65 6e 74 6c Ladies and Gentl
016 65 6d 65 6e 20 6f 66 20 74 68 65 20 63 6c 61 73 emen of the clas
032 73 20 6f 66 20 27 39 39 3a 20 49 66 20 49 20 63 s of '99: If I c
048 6f 75 6c 64 20 6f 66 66 65 72 20 79 6f 75 20 6f ould offer you o
064 6e 6c 79 20 6f 6e 65 20 74 69 70 20 66 6f 72 20 nly one tip for
080 74 68 65 20 66 75 74 75 72 65 2c 20 73 75 6e 73 the future, suns
096 63 72 65 65 6e 20 77 6f 75 6c 64 20 62 65 20 69 creen would be i
112 74 2e t.
Nir & Langley Informational [Page 11]
RFC 7539 ChaCha20 & Poly1305 May 2015
The following figure shows four ChaCha state matrices:
1. First block as it is set up.
2. Second block as it is set up. Note that these blocks are only
two bits apart -- only the counter in position 12 is different.
3. Third block is the first block after the ChaCha20 block
operation.
4. Final block is the second block after the ChaCha20 block
operation was applied.
After that, we show the keystream.
First block setup:
61707865 3320646e 79622d32 6b206574
03020100 07060504 0b0a0908 0f0e0d0c
13121110 17161514 1b1a1918 1f1e1d1c
00000001 00000000 4a000000 00000000
Second block setup:
61707865 3320646e 79622d32 6b206574
03020100 07060504 0b0a0908 0f0e0d0c
13121110 17161514 1b1a1918 1f1e1d1c
00000002 00000000 4a000000 00000000
First block after block operation:
f3514f22 e1d91b40 6f27de2f ed1d63b8
821f138c e2062c3d ecca4f7e 78cff39e
a30a3b8a 920a6072 cd7479b5 34932bed
40ba4c79 cd343ec6 4c2c21ea b7417df0
Second block after block operation:
9f74a669 410f633f 28feca22 7ec44dec
6d34d426 738cb970 3ac5e9f3 45590cc4
da6e8b39 892c831a cdea67c1 2b7e1d90
037463f3 a11a2073 e8bcfb88 edc49139
Keystream:
22:4f:51:f3:40:1b:d9:e1:2f:de:27:6f:b8:63:1d:ed:8c:13:1f:82:3d:2c:06
e2:7e:4f:ca:ec:9e:f3:cf:78:8a:3b:0a:a3:72:60:0a:92:b5:79:74:cd:ed:2b
93:34:79:4c:ba:40:c6:3e:34:cd:ea:21:2c:4c:f0:7d:41:b7:69:a6:74:9f:3f
63:0f:41:22:ca:fe:28:ec:4d:c4:7e:26:d4:34:6d:70:b9:8c:73:f3:e9:c5:3a
c4:0c:59:45:39:8b:6e:da:1a:83:2c:89:c1:67:ea:cd:90:1d:7e:2b:f3:63
Nir & Langley Informational [Page 12]
RFC 7539 ChaCha20 & Poly1305 May 2015
Finally, we XOR the keystream with the plaintext, yielding the
ciphertext:
Ciphertext Sunscreen:
000 6e 2e 35 9a 25 68 f9 80 41 ba 07 28 dd 0d 69 81 n.5.%h..A..(..i.
016 e9 7e 7a ec 1d 43 60 c2 0a 27 af cc fd 9f ae 0b .~z..C`..'......
032 f9 1b 65 c5 52 47 33 ab 8f 59 3d ab cd 62 b3 57 ..e.RG3..Y=..b.W
048 16 39 d6 24 e6 51 52 ab 8f 53 0c 35 9f 08 61 d8 .9.$.QR..S.5..a.
064 07 ca 0d bf 50 0d 6a 61 56 a3 8e 08 8a 22 b6 5e ....P.jaV....".^
080 52 bc 51 4d 16 cc f8 06 81 8c e9 1a b7 79 37 36 R.QM.........y76
096 5a f9 0b bf 74 a3 5b e6 b4 0b 8e ed f2 78 5e 42 Z...t.[......x^B
112 87 4d .M
2.5. The Poly1305 Algorithm
Poly1305 is a one-time authenticator designed by D. J. Bernstein.
Poly1305 takes a 32-byte one-time key and a message and produces a
16-byte tag. This tag is used to authenticate the message.
The original article ([Poly1305]) is titled "The Poly1305-AES
message-authentication code", and the MAC function there requires a
128-bit AES key, a 128-bit "additional key", and a 128-bit (non-
secret) nonce. AES is used there for encrypting the nonce, so as to
get a unique (and secret) 128-bit string, but as the paper states,
"There is nothing special about AES here. One can replace AES with
an arbitrary keyed function from an arbitrary set of nonces to
16-byte strings."
Regardless of how the key is generated, the key is partitioned into
two parts, called "r" and "s". The pair (r,s) should be unique, and
MUST be unpredictable for each invocation (that is why it was
originally obtained by encrypting a nonce), while "r" MAY be
constant, but needs to be modified as follows before being used: ("r"
is treated as a 16-octet little-endian number):
o r[3], r[7], r[11], and r[15] are required to have their top four
bits clear (be smaller than 16)
o r[4], r[8], and r[12] are required to have their bottom two bits
clear (be divisible by 4)
Nir & Langley Informational [Page 13]
RFC 7539 ChaCha20 & Poly1305 May 2015
The following sample code clamps "r" to be appropriate:
/*
Adapted from poly1305aes_test_clamp.c version 20050207
D. J. Bernstein
Public domain.
*/
#include "poly1305aes_test.h"
void poly1305aes_test_clamp(unsigned char r[16])
{
r[3] &= 15;
r[7] &= 15;
r[11] &= 15;
r[15] &= 15;
r[4] &= 252;
r[8] &= 252;
r[12] &= 252;
}
The "s" should be unpredictable, but it is perfectly acceptable to
generate both "r" and "s" uniquely each time. Because each of them
is 128 bits, pseudorandomly generating them (see Section 2.6) is also
acceptable.
The inputs to Poly1305 are:
o A 256-bit one-time key
o An arbitrary length message
The output is a 128-bit tag.
First, the "r" value should be clamped.
Next, set the constant prime "P" be 2^130-5:
3fffffffffffffffffffffffffffffffb. Also set a variable "accumulator"
to zero.
Next, divide the message into 16-byte blocks. The last one might be
shorter:
o Read the block as a little-endian number.
Nir & Langley Informational [Page 14]
RFC 7539 ChaCha20 & Poly1305 May 2015
o Add one bit beyond the number of octets. For a 16-byte block,
this is equivalent to adding 2^128 to the number. For the shorter
block, it can be 2^120, 2^112, or any power of two that is evenly
divisible by 8, all the way down to 2^8.
o If the block is not 17 bytes long (the last block), pad it with
zeros. This is meaningless if you are treating the blocks as
numbers.
o Add this number to the accumulator.
o Multiply by "r".
o Set the accumulator to the result modulo p. To summarize: Acc =
((Acc+block)*r) % p.
Finally, the value of the secret key "s" is added to the accumulator,
and the 128 least significant bits are serialized in little-endian
order to form the tag.
2.5.1. The Poly1305 Algorithms in Pseudocode
clamp(r): r &= 0x0ffffffc0ffffffc0ffffffc0fffffff
poly1305_mac(msg, key):
r = (le_bytes_to_num(key[0..15])
clamp(r)
s = le_num(key[16..31])
accumulator = 0
p = (1<<130)-5
for i=1 upto ceil(msg length in bytes / 16)
n = le_bytes_to_num(msg[((i-1)*16)..(i*16)] | [0x01])
a += n
a = (r * a) % p
end
a += s
return num_to_16_le_bytes(a)
end
2.5.2. Poly1305 Example and Test Vector
For our example, we will dispense with generating the one-time key
using AES, and assume that we got the following keying material:
o Key Material: 85:d6:be:78:57:55:6d:33:7f:44:52:fe:42:d5:06:a8:01:0
3:80:8a:fb:0d:b2:fd:4a:bf:f6:af:41:49:f5:1b
o s as an octet string:
01:03:80:8a:fb:0d:b2:fd:4a:bf:f6:af:41:49:f5:1b
Nir & Langley Informational [Page 15]
RFC 7539 ChaCha20 & Poly1305 May 2015
o s as a 128-bit number: 1bf54941aff6bf4afdb20dfb8a800301
o r before clamping: 85:d6:be:78:57:55:6d:33:7f:44:52:fe:42:d5:06:a8
o Clamped r as a number: 806d5400e52447c036d555408bed685
For our message, we'll use a short text:
Message to be Authenticated:
000 43 72 79 70 74 6f 67 72 61 70 68 69 63 20 46 6f Cryptographic Fo
016 72 75 6d 20 52 65 73 65 61 72 63 68 20 47 72 6f rum Research Gro
032 75 70 up
Since Poly1305 works in 16-byte chunks, the 34-byte message divides
into three blocks. In the following calculation, "Acc" denotes the
accumulator and "Block" the current block:
Block #1
Acc = 00
Block = 6f4620636968706172676f7470797243
Block with 0x01 byte = 016f4620636968706172676f7470797243
Acc + block = 016f4620636968706172676f7470797243
(Acc+Block) * r =
b83fe991ca66800489155dcd69e8426ba2779453994ac90ed284034da565ecf
Acc = ((Acc+Block)*r) % P = 2c88c77849d64ae9147ddeb88e69c83fc
Block #2
Acc = 2c88c77849d64ae9147ddeb88e69c83fc
Block = 6f7247206863726165736552206d7572
Block with 0x01 byte = 016f7247206863726165736552206d7572
Acc + block = 437febea505c820f2ad5150db0709f96e
(Acc+Block) * r =
21dcc992d0c659ba4036f65bb7f88562ae59b32c2b3b8f7efc8b00f78e548a26
Acc = ((Acc+Block)*r) % P = 2d8adaf23b0337fa7cccfb4ea344b30de
Last Block
Acc = 2d8adaf23b0337fa7cccfb4ea344b30de
Block = 7075
Block with 0x01 byte = 017075
Acc + block = 2d8adaf23b0337fa7cccfb4ea344ca153
(Acc + Block) * r =
16d8e08a0f3fe1de4fe4a15486aca7a270a29f1e6c849221e4a6798b8e45321f
((Acc + Block) * r) % P = 28d31b7caff946c77c8844335369d03a7
Nir & Langley Informational [Page 16]
RFC 7539 ChaCha20 & Poly1305 May 2015
Adding s, we get this number, and serialize if to get the tag:
Acc + s = 2a927010caf8b2bc2c6365130c11d06a8
Tag: a8:06:1d:c1:30:51:36:c6:c2:2b:8b:af:0c:01:27:a9
2.6. Generating the Poly1305 Key Using ChaCha20
As said in Section 2.5, it is acceptable to generate the one-time
Poly1305 pseudorandomly. This section defines such a method.
To generate such a key pair (r,s), we will use the ChaCha20 block
function described in Section 2.3. This assumes that we have a
256-bit session key for the Message Authentication Code (MAC)
function, such as SK_ai and SK_ar in Internet Key Exchange Protocol
version 2 (IKEv2) ([RFC7296]), the integrity key in the Encapsulating
Security Payload (ESP) and Authentication Header (AH), or the
client_write_MAC_key and server_write_MAC_key in TLS. Any document
that specifies the use of Poly1305 as a MAC algorithm for some
protocol must specify that 256 bits are allocated for the integrity
key. Note that in the AEAD construction defined in Section 2.8, the
same key is used for encryption and key generation, so the use of
SK_a* or *_write_MAC_key is only for stand-alone Poly1305.
The method is to call the block function with the following
parameters:
o The 256-bit session integrity key is used as the ChaCha20 key.
o The block counter is set to zero.
o The protocol will specify a 96-bit or 64-bit nonce. This MUST be
unique per invocation with the same key, so it MUST NOT be
randomly generated. A counter is a good way to implement this,
but other methods, such as a Linear Feedback Shift Register (LFSR)
are also acceptable. ChaCha20 as specified here requires a 96-bit
nonce. So if the provided nonce is only 64-bit, then the first 32
bits of the nonce will be set to a constant number. This will
usually be zero, but for protocols with multiple senders it may be
different for each sender, but should be the same for all
invocations of the function with the same key by a particular
sender.
After running the block function, we have a 512-bit state. We take
the first 256 bits or the serialized state, and use those as the one-
time Poly1305 key: the first 128 bits are clamped and form "r", while
the next 128 bits become "s". The other 256 bits are discarded.
Nir & Langley Informational [Page 17]
RFC 7539 ChaCha20 & Poly1305 May 2015
Note that while many protocols have provisions for a nonce for
encryption algorithms (often called Initialization Vectors, or IVs),
they usually don't have such a provision for the MAC function. In
that case, the per-invocation nonce will have to come from somewhere
else, such as a message counter.
2.6.1. Poly1305 Key Generation in Pseudocode
poly1305_key_gen(key,nonce):
counter = 0
block = chacha20_block(key,counter,nonce)
return block[0..31]
end
2.6.2. Poly1305 Key Generation Test Vector
For this example, we'll set:
Key:
000 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f ................
016 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f ................
Nonce:
000 00 00 00 00 00 01 02 03 04 05 06 07 ............
The ChaCha state setup with key, nonce, and block counter zero:
61707865 3320646e 79622d32 6b206574
83828180 87868584 8b8a8988 8f8e8d8c
93929190 97969594 9b9a9998 9f9e9d9c
00000000 00000000 03020100 07060504
The ChaCha state after 20 rounds:
8ba0d58a cc815f90 27405081 7194b24a
37b633a8 a50dfde3 e2b8db08 46a6d1fd
7da03782 9183a233 148ad271 b46773d1
3cc1875a 8607def1 ca5c3086 7085eb87
Output bytes:
000 8a d5 a0 8b 90 5f 81 cc 81 50 40 27 4a b2 94 71 ....._...P@'J..q
016 a8 33 b6 37 e3 fd 0d a5 08 db b8 e2 fd d1 a6 46 .3.7...........F
And that output is also the 32-byte one-time key used for Poly1305.
2.7. A Pseudorandom Function for Crypto Suites based on ChaCha/Poly1305
Some protocols, such as IKEv2 ([RFC7296]), require a Pseudorandom
Function (PRF), mostly for key derivation. In the IKEv2 definition,
a PRF is a function that accepts a variable-length key and a
Nir & Langley Informational [Page 18]
RFC 7539 ChaCha20 & Poly1305 May 2015
variable-length input, and returns a fixed-length output. Most
commonly, Hashed MAC (HMAC) constructions are used for this purpose,
and often the same function is used for both message authentication
and PRF.
Poly1305 is not a suitable choice for a PRF. Poly1305 prohibits
using the same key twice, whereas the PRF in IKEv2 is used multiple
times with the same key. Additionally, unlike HMAC, Poly1305 is
biased, so using it for key derivation would reduce the security of
the symmetric encryption.
Chacha20 could be used as a key-derivation function, by generating an
arbitrarily long keystream. However, that is not what protocols such
as IKEv2 require.
For this reason, this document does not specify a PRF and recommends
that crypto suites use some other PRF such as PRF_HMAC_SHA2_256 (see
Section 2.1.2 of [RFC4868]).
2.8. AEAD Construction
AEAD_CHACHA20_POLY1305 is an authenticated encryption with additional
data algorithm. The inputs to AEAD_CHACHA20_POLY1305 are:
o A 256-bit key
o A 96-bit nonce -- different for each invocation with the same key
o An arbitrary length plaintext
o Arbitrary length additional authenticated data (AAD)
Some protocols may have unique per-invocation inputs that are not 96
bits in length. For example, IPsec may specify a 64-bit nonce. In
such a case, it is up to the protocol document to define how to
transform the protocol nonce into a 96-bit nonce, for example, by
concatenating a constant value.
The ChaCha20 and Poly1305 primitives are combined into an AEAD that
takes a 256-bit key and 96-bit nonce as follows:
o First, a Poly1305 one-time key is generated from the 256-bit key
and nonce using the procedure described in Section 2.6.
o Next, the ChaCha20 encryption function is called to encrypt the
plaintext, using the same key and nonce, and with the initial
counter set to 1.
Nir & Langley Informational [Page 19]
RFC 7539 ChaCha20 & Poly1305 May 2015
o Finally, the Poly1305 function is called with the Poly1305 key
calculated above, and a message constructed as a concatenation of
the following:
* The AAD
* padding1 -- the padding is up to 15 zero bytes, and it brings
the total length so far to an integral multiple of 16. If the
length of the AAD was already an integral multiple of 16 bytes,
this field is zero-length.
* The ciphertext
* padding2 -- the padding is up to 15 zero bytes, and it brings
the total length so far to an integral multiple of 16. If the
length of the ciphertext was already an integral multiple of 16
bytes, this field is zero-length.
* The length of the additional data in octets (as a 64-bit
little-endian integer).
* The length of the ciphertext in octets (as a 64-bit little-
endian integer).
The output from the AEAD is twofold:
o A ciphertext of the same length as the plaintext.
o A 128-bit tag, which is the output of the Poly1305 function.
Decryption is similar with the following differences:
o The roles of ciphertext and plaintext are reversed, so the
ChaCha20 encryption function is applied to the ciphertext,
producing the plaintext.
o The Poly1305 function is still run on the AAD and the ciphertext,
not the plaintext.
o The calculated tag is bitwise compared to the received tag. The
message is authenticated if and only if the tags match.
A few notes about this design:
1. The amount of encrypted data possible in a single invocation is
2^32-1 blocks of 64 bytes each, because of the size of the block
counter field in the ChaCha20 block function. This gives a total
of 247,877,906,880 bytes, or nearly 256 GB. This should be
Nir & Langley Informational [Page 20]
RFC 7539 ChaCha20 & Poly1305 May 2015
enough for traffic protocols such as IPsec and TLS, but may be
too small for file and/or disk encryption. For such uses, we can
return to the original design, reduce the nonce to 64 bits, and
use the integer at position 13 as the top 32 bits of a 64-bit
block counter, increasing the total message size to over a
million petabytes (1,180,591,620,717,411,303,360 bytes to be
exact).
2. Despite the previous item, the ciphertext length field in the
construction of the buffer on which Poly1305 runs limits the
ciphertext (and hence, the plaintext) size to 2^64 bytes, or
sixteen thousand petabytes (18,446,744,073,709,551,616 bytes to
be exact).
The AEAD construction in this section is a novel composition of
ChaCha20 and Poly1305. A security analysis of this composition is
given in [Procter].
Here is a list of the parameters for this construction as defined in
Section 4 of RFC 5116:
o K_LEN (key length) is 32 octets.
o P_MAX (maximum size of the plaintext) is 247,877,906,880 bytes, or
nearly 256 GB.
o A_MAX (maximum size of the associated data) is set to 2^64-1
octets by the length field for associated data.
o N_MIN = N_MAX = 12 octets.
o C_MAX = P_MAX + tag length = 247,877,906,896 octets.
Distinct AAD inputs (as described in Section 3.3 of RFC 5116) shall
be concatenated into a single input to AEAD_CHACHA20_POLY1305. It is
up to the application to create a structure in the AAD input if it is
needed.
2.8.1. Pseudocode for the AEAD Construction
pad16(x):
if (len(x) % 16)==0
then return NULL
else return copies(0, 16-(len(x)%16))
end
Nir & Langley Informational [Page 21]
RFC 7539 ChaCha20 & Poly1305 May 2015
chacha20_aead_encrypt(aad, key, iv, constant, plaintext):
nonce = constant | iv
otk = poly1305_key_gen(key, nonce)
ciphertext = chacha20_encrypt(key, 1, nonce, plaintext)
mac_data = aad | pad16(aad)
mac_data |= ciphertext | pad16(ciphertext)
mac_data |= num_to_4_le_bytes(aad.length)
mac_data |= num_to_4_le_bytes(ciphertext.length)
tag = poly1305_mac(mac_data, otk)
return (ciphertext, tag)
2.8.2. Example and Test Vector for AEAD_CHACHA20_POLY1305
For a test vector, we will use the following inputs to the
AEAD_CHACHA20_POLY1305 function:
Plaintext:
000 4c 61 64 69 65 73 20 61 6e 64 20 47 65 6e 74 6c Ladies and Gentl
016 65 6d 65 6e 20 6f 66 20 74 68 65 20 63 6c 61 73 emen of the clas
032 73 20 6f 66 20 27 39 39 3a 20 49 66 20 49 20 63 s of '99: If I c
048 6f 75 6c 64 20 6f 66 66 65 72 20 79 6f 75 20 6f ould offer you o
064 6e 6c 79 20 6f 6e 65 20 74 69 70 20 66 6f 72 20 nly one tip for
080 74 68 65 20 66 75 74 75 72 65 2c 20 73 75 6e 73 the future, suns
096 63 72 65 65 6e 20 77 6f 75 6c 64 20 62 65 20 69 creen would be i
112 74 2e t.
AAD:
000 50 51 52 53 c0 c1 c2 c3 c4 c5 c6 c7 PQRS........
Key:
000 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f ................
016 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f ................
IV:
000 40 41 42 43 44 45 46 47 @ABCDEFG
32-bit fixed-common part:
000 07 00 00 00 ....
Setup for generating Poly1305 one-time key (sender id=7):
61707865 3320646e 79622d32 6b206574
83828180 87868584 8b8a8988 8f8e8d8c
93929190 97969594 9b9a9998 9f9e9d9c
00000000 00000007 43424140 47464544
Nir & Langley Informational [Page 22]
RFC 7539 ChaCha20 & Poly1305 May 2015
After generating Poly1305 one-time key:
252bac7b af47b42d 557ab609 8455e9a4
73d6e10a ebd97510 7875932a ff53d53e
decc7ea2 b44ddbad e49c17d1 d8430bc9
8c94b7bc 8b7d4b4b 3927f67d 1669a432
Poly1305 Key:
000 7b ac 2b 25 2d b4 47 af 09 b6 7a 55 a4 e9 55 84 {.+%-.G...zU..U.
016 0a e1 d6 73 10 75 d9 eb 2a 93 75 78 3e d5 53 ff ...s.u..*.ux>.S.
Poly1305 r = 455e9a4057ab6080f47b42c052bac7b
Poly1305 s = ff53d53e7875932aebd9751073d6e10a
keystream bytes:
9f:7b:e9:5d:01:fd:40:ba:15:e2:8f:fb:36:81:0a:ae:
c1:c0:88:3f:09:01:6e:de:dd:8a:d0:87:55:82:03:a5:
4e:9e:cb:38:ac:8e:5e:2b:b8:da:b2:0f:fa:db:52:e8:
75:04:b2:6e:be:69:6d:4f:60:a4:85:cf:11:b8:1b:59:
fc:b1:c4:5f:42:19:ee:ac:ec:6a:de:c3:4e:66:69:78:
8e:db:41:c4:9c:a3:01:e1:27:e0:ac:ab:3b:44:b9:cf:
5c:86:bb:95:e0:6b:0d:f2:90:1a:b6:45:e4:ab:e6:22:
15:38
Ciphertext:
000 d3 1a 8d 34 64 8e 60 db 7b 86 af bc 53 ef 7e c2 ...4d.`.{...S.~.
016 a4 ad ed 51 29 6e 08 fe a9 e2 b5 a7 36 ee 62 d6 ...Q)n......6.b.
032 3d be a4 5e 8c a9 67 12 82 fa fb 69 da 92 72 8b =..^..g....i..r.
048 1a 71 de 0a 9e 06 0b 29 05 d6 a5 b6 7e cd 3b 36 .q.....)....~.;6
064 92 dd bd 7f 2d 77 8b 8c 98 03 ae e3 28 09 1b 58 ....-w......(..X
080 fa b3 24 e4 fa d6 75 94 55 85 80 8b 48 31 d7 bc ..$...u.U...H1..
096 3f f4 de f0 8e 4b 7a 9d e5 76 d2 65 86 ce c6 4b ?....Kz..v.e...K
112 61 16 a.
AEAD Construction for Poly1305:
000 50 51 52 53 c0 c1 c2 c3 c4 c5 c6 c7 00 00 00 00 PQRS............
016 d3 1a 8d 34 64 8e 60 db 7b 86 af bc 53 ef 7e c2 ...4d.`.{...S.~.
032 a4 ad ed 51 29 6e 08 fe a9 e2 b5 a7 36 ee 62 d6 ...Q)n......6.b.
048 3d be a4 5e 8c a9 67 12 82 fa fb 69 da 92 72 8b =..^..g....i..r.
064 1a 71 de 0a 9e 06 0b 29 05 d6 a5 b6 7e cd 3b 36 .q.....)....~.;6
080 92 dd bd 7f 2d 77 8b 8c 98 03 ae e3 28 09 1b 58 ....-w......(..X
096 fa b3 24 e4 fa d6 75 94 55 85 80 8b 48 31 d7 bc ..$...u.U...H1..
112 3f f4 de f0 8e 4b 7a 9d e5 76 d2 65 86 ce c6 4b ?....Kz..v.e...K
128 61 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a...............
144 0c 00 00 00 00 00 00 00 72 00 00 00 00 00 00 00 ........r.......
Note the four zero bytes in line 000 and the 14 zero bytes in line
128
Nir & Langley Informational [Page 23]
RFC 7539 ChaCha20 & Poly1305 May 2015
Tag:
1a:e1:0b:59:4f:09:e2:6a:7e:90:2e:cb:d0:60:06:91
3. Implementation Advice
Each block of ChaCha20 involves 16 move operations and one increment
operation for loading the state, 80 each of XOR, addition and Roll
operations for the rounds, 16 more add operations and 16 XOR
operations for protecting the plaintext. Section 2.3 describes the
ChaCha block function as "adding the original input words". This
implies that before starting the rounds on the ChaCha state, we copy
it aside, only to add it in later. This is correct, but we can save
a few operations if we instead copy the state and do the work on the
copy. This way, for the next block you don't need to recreate the
state, but only to increment the block counter. This saves
approximately 5.5% of the cycles.
It is not recommended to use a generic big number library such as the
one in OpenSSL for the arithmetic operations in Poly1305. Such
libraries use dynamic allocation to be able to handle an integer of
any size, but that flexibility comes at the expense of performance as
well as side-channel security. More efficient implementations that
run in constant time are available, one of them in D. J. Bernstein's
own library, NaCl ([NaCl]). A constant-time but not optimal approach
would be to naively implement the arithmetic operations for 288-bit
integers, because even a naive implementation will not exceed 2^288
in the multiplication of (acc+block) and r. An efficient constant-
time implementation can be found in the public domain library
poly1305-donna ([Poly1305_Donna]).
4. Security Considerations
The ChaCha20 cipher is designed to provide 256-bit security.
The Poly1305 authenticator is designed to ensure that forged messages
are rejected with a probability of 1-(n/(2^102)) for a 16n-byte
message, even after sending 2^64 legitimate messages, so it is
SUF-CMA (strong unforgeability against chosen-message attacks) in the
terminology of [AE].
Proving the security of either of these is beyond the scope of this
document. Such proofs are available in the referenced academic
papers ([ChaCha], [Poly1305], [LatinDances], [LatinDances2], and
[Zhenqing2012]).
The most important security consideration in implementing this
document is the uniqueness of the nonce used in ChaCha20. Counters
and LFSRs are both acceptable ways of generating unique nonces, as is
Nir & Langley Informational [Page 24]
RFC 7539 ChaCha20 & Poly1305 May 2015
encrypting a counter using a 64-bit cipher such as DES. Note that it
is not acceptable to use a truncation of a counter encrypted with a
128-bit or 256-bit cipher, because such a truncation may repeat after
a short time.
Consequences of repeating a nonce: If a nonce is repeated, then both
the one-time Poly1305 key and the keystream are identical between the
messages. This reveals the XOR of the plaintexts, because the XOR of
the plaintexts is equal to the XOR of the ciphertexts.
The Poly1305 key MUST be unpredictable to an attacker. Randomly
generating the key would fulfill this requirement, except that
Poly1305 is often used in communications protocols, so the receiver
should know the key. Pseudorandom number generation such as by
encrypting a counter is acceptable. Using ChaCha with a secret key
and a nonce is also acceptable.
The algorithms presented here were designed to be easy to implement
in constant time to avoid side-channel vulnerabilities. The
operations used in ChaCha20 are all additions, XORs, and fixed
rotations. All of these can and should be implemented in constant
time. Access to offsets into the ChaCha state and the number of
operations do not depend on any property of the key, eliminating the
chance of information about the key leaking through the timing of
cache misses.
For Poly1305, the operations are addition, multiplication. and
modulus, all on numbers with greater than 128 bits. This can be done
in constant time, but a naive implementation (such as using some
generic big number library) will not be constant time. For example,
if the multiplication is performed as a separate operation from the
modulus, the result will sometimes be under 2^256 and sometimes be
above 2^256. Implementers should be careful about timing side-
channels for Poly1305 by using the appropriate implementation of
these operations.
Validating the authenticity of a message involves a bitwise
comparison of the calculated tag with the received tag. In most use
cases, nonces and AAD contents are not "used up" until a valid
message is received. This allows an attacker to send multiple
identical messages with different tags until one passes the tag
comparison. This is hard if the attacker has to try all 2^128
possible tags one by one. However, if the timing of the tag
comparison operation reveals how long a prefix of the calculated and
received tags is identical, the number of messages can be reduced
significantly. For this reason, with online protocols,
Nir & Langley Informational [Page 25]
RFC 7539 ChaCha20 & Poly1305 May 2015
implementation MUST use a constant-time comparison function rather
than relying on optimized but insecure library functions such as the
C language's memcmp().
5. IANA Considerations
IANA has assigned an entry in the "Authenticated Encryption with
Associated Data (AEAD) Parameters" registry with 29 as the Numeric
ID, "AEAD_CHACHA20_POLY1305" as the name, and this document as
reference.
6. References
6.1. Normative References
[ChaCha] Bernstein, D., "ChaCha, a variant of Salsa20", January
2008, <http://cr.yp.to/chacha/chacha-20080128.pdf>.
[Poly1305] Bernstein, D., "The Poly1305-AES message-authentication
code", March 2005,
<http://cr.yp.to/mac/poly1305-20050329.pdf>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
6.2. Informative References
[AE] Bellare, M. and C. Namprempre, "Authenticated Encryption:
Relations among notions and analysis of the generic
composition paradigm", September 2008,
<http://dl.acm.org/citation.cfm?id=1410269>.
[Cache-Collisions]
Bonneau, J. and I. Mironov, "Cache-Collision Timing
Attacks Against AES", 2006,
<http://research.microsoft.com/pubs/64024/aes-timing.pdf>.
[FIPS-197] National Institute of Standards and Technology, "Advanced
Encryption Standard (AES)", FIPS PUB 197, November 2001,
<http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf>.
Nir & Langley Informational [Page 26]
RFC 7539 ChaCha20 & Poly1305 May 2015
[LatinDances]
Aumasson, J., Fischer, S., Khazaei, S., Meier, W., and C.
Rechberger, "New Features of Latin Dances: Analysis of
Salsa, ChaCha, and Rumba", December 2007,
<http://cr.yp.to/rumba20/newfeatures-20071218.pdf>.
[LatinDances2]
Ishiguro, T., Kiyomoto, S., and Y. Miyake, "Modified
version of 'Latin Dances Revisited: New Analytic Results
of Salsa20 and ChaCha'", February 2012,
<https://eprint.iacr.org/2012/065.pdf>.
[NaCl] Bernstein, D., Lange, T., and P. Schwabe, "NaCl:
Networking and Cryptography library", July 2012,
<http://nacl.cr.yp.to>.
[Poly1305_Donna]
Floodyberry, A., "poly1305-donna", February 2014,
<https://github.com/floodyberry/poly1305-donna>.
[Procter] Procter, G., "A Security Analysis of the Composition of
ChaCha20 and Poly1305", August 2014,
<http://eprint.iacr.org/2014/613.pdf>.
[RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
384, and HMAC-SHA-512 with IPsec", RFC 4868,
DOI 10.17487/RFC4868, May 2007,
<http://www.rfc-editor.org/info/rfc4868>.
[RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
<http://www.rfc-editor.org/info/rfc5116>.
[RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
Kivinen, "Internet Key Exchange Protocol Version 2
(IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
2014, <http://www.rfc-editor.org/info/rfc7296>.
[SP800-67] National Institute of Standards and Technology,
"Recommendation for the Triple Data Encryption Algorithm
(TDEA) Block Cipher", NIST 800-67, January 2012,
<http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/
SP-800-67-Rev1.pdf>.
Nir & Langley Informational [Page 27]
RFC 7539 ChaCha20 & Poly1305 May 2015
[Standby-Cipher]
McGrew, D., Grieco, A., and Y. Sheffer, "Selection of
Future Cryptographic Standards", Work in Progress,
draft-mcgrew-standby-cipher-00, January 2013.
[Zhenqing2012]
Zhenqing, S., Bin, Z., Dengguo, F., and W. Wenling,
"Improved Key Recovery Attacks on Reduced-Round Salsa20
and ChaCha*", 2012.
Nir & Langley Informational [Page 28]
RFC 7539 ChaCha20 & Poly1305 May 2015
Appendix A. Additional Test Vectors
The subsections of this appendix contain more test vectors for the
algorithms in the sub-sections of Section 2.
A.1. The ChaCha20 Block Functions
Test Vector #1:
==============
Key:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
Nonce:
000 00 00 00 00 00 00 00 00 00 00 00 00 ............
Block Counter = 0
ChaCha state at the end
ade0b876 903df1a0 e56a5d40 28bd8653
b819d2bd 1aed8da0 ccef36a8 c70d778b
7c5941da 8d485751 3fe02477 374ad8b8
f4b8436a 1ca11815 69b687c3 8665eeb2
Keystream:
000 76 b8 e0 ad a0 f1 3d 90 40 5d 6a e5 53 86 bd 28 v.....=.@]j.S..(
016 bd d2 19 b8 a0 8d ed 1a a8 36 ef cc 8b 77 0d c7 .........6...w..
032 da 41 59 7c 51 57 48 8d 77 24 e0 3f b8 d8 4a 37 .AY|QWH.w$.?..J7
048 6a 43 b8 f4 15 18 a1 1c c3 87 b6 69 b2 ee 65 86 jC.........i..e.
Nir & Langley Informational [Page 29]
RFC 7539 ChaCha20 & Poly1305 May 2015
Test Vector #2:
==============
Key:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
Nonce:
000 00 00 00 00 00 00 00 00 00 00 00 00 ............
Block Counter = 1
ChaCha state at the end
bee7079f 7a385155 7c97ba98 0d082d73
a0290fcb 6965e348 3e53c612 ed7aee32
7621b729 434ee69c b03371d5 d539d874
281fed31 45fb0a51 1f0ae1ac 6f4d794b
Keystream:
000 9f 07 e7 be 55 51 38 7a 98 ba 97 7c 73 2d 08 0d ....UQ8z...|s-..
016 cb 0f 29 a0 48 e3 65 69 12 c6 53 3e 32 ee 7a ed ..).H.ei..S>2.z.
032 29 b7 21 76 9c e6 4e 43 d5 71 33 b0 74 d8 39 d5 ).!v..NC.q3.t.9.
048 31 ed 1f 28 51 0a fb 45 ac e1 0a 1f 4b 79 4d 6f 1..(Q..E....KyMo
Test Vector #3:
==============
Key:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 ................
Nonce:
000 00 00 00 00 00 00 00 00 00 00 00 00 ............
Block Counter = 1
ChaCha state at the end
2452eb3a 9249f8ec 8d829d9b ddd4ceb1
e8252083 60818b01 f38422b8 5aaa49c9
bb00ca8e da3ba7b4 c4b592d1 fdf2732f
4436274e 2561b3c8 ebdd4aa6 a0136c00
Keystream:
000 3a eb 52 24 ec f8 49 92 9b 9d 82 8d b1 ce d4 dd :.R$..I.........
016 83 20 25 e8 01 8b 81 60 b8 22 84 f3 c9 49 aa 5a . %....`."...I.Z
032 8e ca 00 bb b4 a7 3b da d1 92 b5 c4 2f 73 f2 fd ......;...../s..
048 4e 27 36 44 c8 b3 61 25 a6 4a dd eb 00 6c 13 a0 N'6D..a%.J...l..
Nir & Langley Informational [Page 30]
RFC 7539 ChaCha20 & Poly1305 May 2015
Test Vector #4:
==============
Key:
000 00 ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
Nonce:
000 00 00 00 00 00 00 00 00 00 00 00 00 ............
Block Counter = 2
ChaCha state at the end
fb4dd572 4bc42ef1 df922636 327f1394
a78dea8f 5e269039 a1bebbc1 caf09aae
a25ab213 48a6b46c 1b9d9bcb 092c5be6
546ca624 1bec45d5 87f47473 96f0992e
Keystream:
000 72 d5 4d fb f1 2e c4 4b 36 26 92 df 94 13 7f 32 r.M....K6&.....2
016 8f ea 8d a7 39 90 26 5e c1 bb be a1 ae 9a f0 ca ....9.&^........
032 13 b2 5a a2 6c b4 a6 48 cb 9b 9d 1b e6 5b 2c 09 ..Z.l..H.....[,.
048 24 a6 6c 54 d5 45 ec 1b 73 74 f4 87 2e 99 f0 96 $.lT.E..st......
Test Vector #5:
==============
Key:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
Nonce:
000 00 00 00 00 00 00 00 00 00 00 00 02 ............
Block Counter = 0
ChaCha state at the end
374dc6c2 3736d58c b904e24a cd3f93ef
88228b1a 96a4dfb3 5b76ab72 c727ee54
0e0e978a f3145c95 1b748ea8 f786c297
99c28f5f 628314e8 398a19fa 6ded1b53
Keystream:
000 c2 c6 4d 37 8c d5 36 37 4a e2 04 b9 ef 93 3f cd ..M7..67J.....?.
016 1a 8b 22 88 b3 df a4 96 72 ab 76 5b 54 ee 27 c7 ..".....r.v[T.'.
032 8a 97 0e 0e 95 5c 14 f3 a8 8e 74 1b 97 c2 86 f7 .....\....t.....
048 5f 8f c2 99 e8 14 83 62 fa 19 8a 39 53 1b ed 6d _......b...9S..m
Nir & Langley Informational [Page 31]
RFC 7539 ChaCha20 & Poly1305 May 2015
A.2. ChaCha20 Encryption
Test Vector #1:
==============
Key:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
Nonce:
000 00 00 00 00 00 00 00 00 00 00 00 00 ............
Initial Block Counter = 0
Plaintext:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
032 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
048 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
Ciphertext:
000 76 b8 e0 ad a0 f1 3d 90 40 5d 6a e5 53 86 bd 28 v.....=.@]j.S..(
016 bd d2 19 b8 a0 8d ed 1a a8 36 ef cc 8b 77 0d c7 .........6...w..
032 da 41 59 7c 51 57 48 8d 77 24 e0 3f b8 d8 4a 37 .AY|QWH.w$.?..J7
048 6a 43 b8 f4 15 18 a1 1c c3 87 b6 69 b2 ee 65 86 jC.........i..e.
Test Vector #2:
==============
Key:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 ................
Nonce:
000 00 00 00 00 00 00 00 00 00 00 00 02 ............
Initial Block Counter = 1
Plaintext:
000 41 6e 79 20 73 75 62 6d 69 73 73 69 6f 6e 20 74 Any submission t
016 6f 20 74 68 65 20 49 45 54 46 20 69 6e 74 65 6e o the IETF inten
032 64 65 64 20 62 79 20 74 68 65 20 43 6f 6e 74 72 ded by the Contr
048 69 62 75 74 6f 72 20 66 6f 72 20 70 75 62 6c 69 ibutor for publi
064 63 61 74 69 6f 6e 20 61 73 20 61 6c 6c 20 6f 72 cation as all or
080 20 70 61 72 74 20 6f 66 20 61 6e 20 49 45 54 46 part of an IETF
096 20 49 6e 74 65 72 6e 65 74 2d 44 72 61 66 74 20 Internet-Draft
112 6f 72 20 52 46 43 20 61 6e 64 20 61 6e 79 20 73 or RFC and any s
128 74 61 74 65 6d 65 6e 74 20 6d 61 64 65 20 77 69 tatement made wi
Nir & Langley Informational [Page 32]
RFC 7539 ChaCha20 & Poly1305 May 2015
144 74 68 69 6e 20 74 68 65 20 63 6f 6e 74 65 78 74 thin the context
160 20 6f 66 20 61 6e 20 49 45 54 46 20 61 63 74 69 of an IETF acti
176 76 69 74 79 20 69 73 20 63 6f 6e 73 69 64 65 72 vity is consider
192 65 64 20 61 6e 20 22 49 45 54 46 20 43 6f 6e 74 ed an "IETF Cont
208 72 69 62 75 74 69 6f 6e 22 2e 20 53 75 63 68 20 ribution". Such
224 73 74 61 74 65 6d 65 6e 74 73 20 69 6e 63 6c 75 statements inclu
240 64 65 20 6f 72 61 6c 20 73 74 61 74 65 6d 65 6e de oral statemen
256 74 73 20 69 6e 20 49 45 54 46 20 73 65 73 73 69 ts in IETF sessi
272 6f 6e 73 2c 20 61 73 20 77 65 6c 6c 20 61 73 20 ons, as well as
288 77 72 69 74 74 65 6e 20 61 6e 64 20 65 6c 65 63 written and elec
304 74 72 6f 6e 69 63 20 63 6f 6d 6d 75 6e 69 63 61 tronic communica
320 74 69 6f 6e 73 20 6d 61 64 65 20 61 74 20 61 6e tions made at an
336 79 20 74 69 6d 65 20 6f 72 20 70 6c 61 63 65 2c y time or place,
352 20 77 68 69 63 68 20 61 72 65 20 61 64 64 72 65 which are addre
368 73 73 65 64 20 74 6f ssed to
Ciphertext:
000 a3 fb f0 7d f3 fa 2f de 4f 37 6c a2 3e 82 73 70 ...}../.O7l.>.sp
016 41 60 5d 9f 4f 4f 57 bd 8c ff 2c 1d 4b 79 55 ec A`].OOW...,.KyU.
032 2a 97 94 8b d3 72 29 15 c8 f3 d3 37 f7 d3 70 05 *....r)....7..p.
048 0e 9e 96 d6 47 b7 c3 9f 56 e0 31 ca 5e b6 25 0d ....G...V.1.^.%.
064 40 42 e0 27 85 ec ec fa 4b 4b b5 e8 ea d0 44 0e @B.'....KK....D.
080 20 b6 e8 db 09 d8 81 a7 c6 13 2f 42 0e 52 79 50 ........./B.RyP
096 42 bd fa 77 73 d8 a9 05 14 47 b3 29 1c e1 41 1c B..ws....G.)..A.
112 68 04 65 55 2a a6 c4 05 b7 76 4d 5e 87 be a8 5a h.eU*....vM^...Z
128 d0 0f 84 49 ed 8f 72 d0 d6 62 ab 05 26 91 ca 66 ...I..r..b..&..f
144 42 4b c8 6d 2d f8 0e a4 1f 43 ab f9 37 d3 25 9d BK.m-....C..7.%.
160 c4 b2 d0 df b4 8a 6c 91 39 dd d7 f7 69 66 e9 28 ......l.9...if.(
176 e6 35 55 3b a7 6c 5c 87 9d 7b 35 d4 9e b2 e6 2b .5U;.l\..{5....+
192 08 71 cd ac 63 89 39 e2 5e 8a 1e 0e f9 d5 28 0f .q..c.9.^.....(.
208 a8 ca 32 8b 35 1c 3c 76 59 89 cb cf 3d aa 8b 6c ..2.5.<vY...=..l
224 cc 3a af 9f 39 79 c9 2b 37 20 fc 88 dc 95 ed 84 .:..9y.+7 ......
240 a1 be 05 9c 64 99 b9 fd a2 36 e7 e8 18 b0 4b 0b ....d....6....K.
256 c3 9c 1e 87 6b 19 3b fe 55 69 75 3f 88 12 8c c0 ....k.;.Uiu?....
272 8a aa 9b 63 d1 a1 6f 80 ef 25 54 d7 18 9c 41 1f ...c..o..%T...A.
288 58 69 ca 52 c5 b8 3f a3 6f f2 16 b9 c1 d3 00 62 Xi.R..?.o......b
304 be bc fd 2d c5 bc e0 91 19 34 fd a7 9a 86 f6 e6 ...-.....4......
320 98 ce d7 59 c3 ff 9b 64 77 33 8f 3d a4 f9 cd 85 ...Y...dw3.=....
336 14 ea 99 82 cc af b3 41 b2 38 4d d9 02 f3 d1 ab .......A.8M.....
352 7a c6 1d d2 9c 6f 21 ba 5b 86 2f 37 30 e3 7c fd z....o!.[./70.|.
368 c4 fd 80 6c 22 f2 21 ...l".!
Nir & Langley Informational [Page 33]
RFC 7539 ChaCha20 & Poly1305 May 2015
Test Vector #3:
==============
Key:
000 1c 92 40 a5 eb 55 d3 8a f3 33 88 86 04 f6 b5 f0 ..@..U...3......
016 47 39 17 c1 40 2b 80 09 9d ca 5c bc 20 70 75 c0 G9..@+....\. pu.
Nonce:
000 00 00 00 00 00 00 00 00 00 00 00 02 ............
Initial Block Counter = 42
Plaintext:
000 27 54 77 61 73 20 62 72 69 6c 6c 69 67 2c 20 61 'Twas brillig, a
016 6e 64 20 74 68 65 20 73 6c 69 74 68 79 20 74 6f nd the slithy to
032 76 65 73 0a 44 69 64 20 67 79 72 65 20 61 6e 64 ves.Did gyre and
048 20 67 69 6d 62 6c 65 20 69 6e 20 74 68 65 20 77 gimble in the w
064 61 62 65 3a 0a 41 6c 6c 20 6d 69 6d 73 79 20 77 abe:.All mimsy w
080 65 72 65 20 74 68 65 20 62 6f 72 6f 67 6f 76 65 ere the borogove
096 73 2c 0a 41 6e 64 20 74 68 65 20 6d 6f 6d 65 20 s,.And the mome
112 72 61 74 68 73 20 6f 75 74 67 72 61 62 65 2e raths outgrabe.
Ciphertext:
000 62 e6 34 7f 95 ed 87 a4 5f fa e7 42 6f 27 a1 df b.4....._..Bo'..
016 5f b6 91 10 04 4c 0d 73 11 8e ff a9 5b 01 e5 cf _....L.s....[...
032 16 6d 3d f2 d7 21 ca f9 b2 1e 5f b1 4c 61 68 71 .m=..!...._.Lahq
048 fd 84 c5 4f 9d 65 b2 83 19 6c 7f e4 f6 05 53 eb ...O.e...l....S.
064 f3 9c 64 02 c4 22 34 e3 2a 35 6b 3e 76 43 12 a6 ..d.."4.*5k>vC..
080 1a 55 32 05 57 16 ea d6 96 25 68 f8 7d 3f 3f 77 .U2.W....%h.}??w
096 04 c6 a8 d1 bc d1 bf 4d 50 d6 15 4b 6d a7 31 b1 .......MP..Km.1.
112 87 b5 8d fd 72 8a fa 36 75 7a 79 7a c1 88 d1 ....r..6uzyz...
A.3. Poly1305 Message Authentication Code
Notice how, in test vector #2, r is equal to zero. The part of the
Poly1305 algorithm where the accumulator is multiplied by r means
that with r equal zero, the tag will be equal to s regardless of the
content of the text. Fortunately, all the proposed methods of
generating r are such that getting this particular weak key is very
unlikely.
Nir & Langley Informational [Page 34]
RFC 7539 ChaCha20 & Poly1305 May 2015
Test Vector #1:
==============
One-time Poly1305 Key:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
Text to MAC:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
032 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
048 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
Tag:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
Nir & Langley Informational [Page 35]
RFC 7539 ChaCha20 & Poly1305 May 2015
Test Vector #2:
==============
One-time Poly1305 Key:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 36 e5 f6 b5 c5 e0 60 70 f0 ef ca 96 22 7a 86 3e 6.....`p...."z.>
Text to MAC:
000 41 6e 79 20 73 75 62 6d 69 73 73 69 6f 6e 20 74 Any submission t
016 6f 20 74 68 65 20 49 45 54 46 20 69 6e 74 65 6e o the IETF inten
032 64 65 64 20 62 79 20 74 68 65 20 43 6f 6e 74 72 ded by the Contr
048 69 62 75 74 6f 72 20 66 6f 72 20 70 75 62 6c 69 ibutor for publi
064 63 61 74 69 6f 6e 20 61 73 20 61 6c 6c 20 6f 72 cation as all or
080 20 70 61 72 74 20 6f 66 20 61 6e 20 49 45 54 46 part of an IETF
096 20 49 6e 74 65 72 6e 65 74 2d 44 72 61 66 74 20 Internet-Draft
112 6f 72 20 52 46 43 20 61 6e 64 20 61 6e 79 20 73 or RFC and any s
128 74 61 74 65 6d 65 6e 74 20 6d 61 64 65 20 77 69 tatement made wi
144 74 68 69 6e 20 74 68 65 20 63 6f 6e 74 65 78 74 thin the context
160 20 6f 66 20 61 6e 20 49 45 54 46 20 61 63 74 69 of an IETF acti
176 76 69 74 79 20 69 73 20 63 6f 6e 73 69 64 65 72 vity is consider
192 65 64 20 61 6e 20 22 49 45 54 46 20 43 6f 6e 74 ed an "IETF Cont
208 72 69 62 75 74 69 6f 6e 22 2e 20 53 75 63 68 20 ribution". Such
224 73 74 61 74 65 6d 65 6e 74 73 20 69 6e 63 6c 75 statements inclu
240 64 65 20 6f 72 61 6c 20 73 74 61 74 65 6d 65 6e de oral statemen
256 74 73 20 69 6e 20 49 45 54 46 20 73 65 73 73 69 ts in IETF sessi
272 6f 6e 73 2c 20 61 73 20 77 65 6c 6c 20 61 73 20 ons, as well as
288 77 72 69 74 74 65 6e 20 61 6e 64 20 65 6c 65 63 written and elec
304 74 72 6f 6e 69 63 20 63 6f 6d 6d 75 6e 69 63 61 tronic communica
320 74 69 6f 6e 73 20 6d 61 64 65 20 61 74 20 61 6e tions made at an
336 79 20 74 69 6d 65 20 6f 72 20 70 6c 61 63 65 2c y time or place,
352 20 77 68 69 63 68 20 61 72 65 20 61 64 64 72 65 which are addre
368 73 73 65 64 20 74 6f ssed to
Tag:
000 36 e5 f6 b5 c5 e0 60 70 f0 ef ca 96 22 7a 86 3e 6.....`p...."z.>
Nir & Langley Informational [Page 36]
RFC 7539 ChaCha20 & Poly1305 May 2015
Test Vector #3:
==============
One-time Poly1305 Key:
000 36 e5 f6 b5 c5 e0 60 70 f0 ef ca 96 22 7a 86 3e 6.....`p...."z.>
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
Text to MAC:
000 41 6e 79 20 73 75 62 6d 69 73 73 69 6f 6e 20 74 Any submission t
016 6f 20 74 68 65 20 49 45 54 46 20 69 6e 74 65 6e o the IETF inten
032 64 65 64 20 62 79 20 74 68 65 20 43 6f 6e 74 72 ded by the Contr
048 69 62 75 74 6f 72 20 66 6f 72 20 70 75 62 6c 69 ibutor for publi
064 63 61 74 69 6f 6e 20 61 73 20 61 6c 6c 20 6f 72 cation as all or
080 20 70 61 72 74 20 6f 66 20 61 6e 20 49 45 54 46 part of an IETF
096 20 49 6e 74 65 72 6e 65 74 2d 44 72 61 66 74 20 Internet-Draft
112 6f 72 20 52 46 43 20 61 6e 64 20 61 6e 79 20 73 or RFC and any s
128 74 61 74 65 6d 65 6e 74 20 6d 61 64 65 20 77 69 tatement made wi
144 74 68 69 6e 20 74 68 65 20 63 6f 6e 74 65 78 74 thin the context
160 20 6f 66 20 61 6e 20 49 45 54 46 20 61 63 74 69 of an IETF acti
176 76 69 74 79 20 69 73 20 63 6f 6e 73 69 64 65 72 vity is consider
192 65 64 20 61 6e 20 22 49 45 54 46 20 43 6f 6e 74 ed an "IETF Cont
208 72 69 62 75 74 69 6f 6e 22 2e 20 53 75 63 68 20 ribution". Such
224 73 74 61 74 65 6d 65 6e 74 73 20 69 6e 63 6c 75 statements inclu
240 64 65 20 6f 72 61 6c 20 73 74 61 74 65 6d 65 6e de oral statemen
256 74 73 20 69 6e 20 49 45 54 46 20 73 65 73 73 69 ts in IETF sessi
272 6f 6e 73 2c 20 61 73 20 77 65 6c 6c 20 61 73 20 ons, as well as
288 77 72 69 74 74 65 6e 20 61 6e 64 20 65 6c 65 63 written and elec
304 74 72 6f 6e 69 63 20 63 6f 6d 6d 75 6e 69 63 61 tronic communica
320 74 69 6f 6e 73 20 6d 61 64 65 20 61 74 20 61 6e tions made at an
336 79 20 74 69 6d 65 20 6f 72 20 70 6c 61 63 65 2c y time or place,
352 20 77 68 69 63 68 20 61 72 65 20 61 64 64 72 65 which are addre
368 73 73 65 64 20 74 6f ssed to
Tag:
000 f3 47 7e 7c d9 54 17 af 89 a6 b8 79 4c 31 0c f0 .G~|.T.....yL1..
Nir & Langley Informational [Page 37]
RFC 7539 ChaCha20 & Poly1305 May 2015
Test Vector #4:
==============
One-time Poly1305 Key:
000 1c 92 40 a5 eb 55 d3 8a f3 33 88 86 04 f6 b5 f0 ..@..U...3......
016 47 39 17 c1 40 2b 80 09 9d ca 5c bc 20 70 75 c0 G9..@+....\. pu.
Text to MAC:
000 27 54 77 61 73 20 62 72 69 6c 6c 69 67 2c 20 61 'Twas brillig, a
016 6e 64 20 74 68 65 20 73 6c 69 74 68 79 20 74 6f nd the slithy to
032 76 65 73 0a 44 69 64 20 67 79 72 65 20 61 6e 64 ves.Did gyre and
048 20 67 69 6d 62 6c 65 20 69 6e 20 74 68 65 20 77 gimble in the w
064 61 62 65 3a 0a 41 6c 6c 20 6d 69 6d 73 79 20 77 abe:.All mimsy w
080 65 72 65 20 74 68 65 20 62 6f 72 6f 67 6f 76 65 ere the borogove
096 73 2c 0a 41 6e 64 20 74 68 65 20 6d 6f 6d 65 20 s,.And the mome
112 72 61 74 68 73 20 6f 75 74 67 72 61 62 65 2e raths outgrabe.
Tag:
000 45 41 66 9a 7e aa ee 61 e7 08 dc 7c bc c5 eb 62 EAf.~..a...|...b
Test Vector #5: If one uses 130-bit partial reduction, does the code
handle the case where partially reduced final result is not fully
reduced?
R:
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
S:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
data:
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
tag:
03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Test Vector #6: What happens if addition of s overflows modulo 2^128?
R:
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
S:
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
data:
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
tag:
03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Nir & Langley Informational [Page 38]
RFC 7539 ChaCha20 & Poly1305 May 2015
Test Vector #7: What happens if data limb is all ones and there is
carry from lower limb?
R:
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
S:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
data:
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
F0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
tag:
05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Test Vector #8: What happens if final result from polynomial part is
exactly 2^130-5?
R:
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
S:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
data:
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FB FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
tag:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Test Vector #9: What happens if final result from polynomial part is
exactly 2^130-6?
R:
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
S:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
data:
FD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
tag:
FA FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
Nir & Langley Informational [Page 39]
RFC 7539 ChaCha20 & Poly1305 May 2015
Test Vector #10: What happens if 5*H+L-type reduction produces
131-bit intermediate result?
R:
01 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00
S:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
data:
E3 35 94 D7 50 5E 43 B9 00 00 00 00 00 00 00 00
33 94 D7 50 5E 43 79 CD 01 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
tag:
14 00 00 00 00 00 00 00 55 00 00 00 00 00 00 00
Test Vector #11: What happens if 5*H+L-type reduction produces
131-bit final result?
R:
01 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00
S:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
data:
E3 35 94 D7 50 5E 43 B9 00 00 00 00 00 00 00 00
33 94 D7 50 5E 43 79 CD 01 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
tag:
13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
A.4. Poly1305 Key Generation Using ChaCha20
Test Vector #1:
==============
The key:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
The nonce:
000 00 00 00 00 00 00 00 00 00 00 00 00 ............
Poly1305 one-time key:
000 76 b8 e0 ad a0 f1 3d 90 40 5d 6a e5 53 86 bd 28 v.....=.@]j.S..(
016 bd d2 19 b8 a0 8d ed 1a a8 36 ef cc 8b 77 0d c7 .........6...w..
Nir & Langley Informational [Page 40]
RFC 7539 ChaCha20 & Poly1305 May 2015
Test Vector #2:
==============
The key:
000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
016 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 ................
The nonce:
000 00 00 00 00 00 00 00 00 00 00 00 02 ............
Poly1305 one-time key:
000 ec fa 25 4f 84 5f 64 74 73 d3 cb 14 0d a9 e8 76 ..%O._dts......v
016 06 cb 33 06 6c 44 7b 87 bc 26 66 dd e3 fb b7 39 ..3.lD{..&f....9
Test Vector #3:
==============
The key:
000 1c 92 40 a5 eb 55 d3 8a f3 33 88 86 04 f6 b5 f0 ..@..U...3......
016 47 39 17 c1 40 2b 80 09 9d ca 5c bc 20 70 75 c0 G9..@+....\. pu.
The nonce:
000 00 00 00 00 00 00 00 00 00 00 00 02 ............
Poly1305 one-time key:
000 96 5e 3b c6 f9 ec 7e d9 56 08 08 f4 d2 29 f9 4b .^;...~.V....).K
016 13 7f f2 75 ca 9b 3f cb dd 59 de aa d2 33 10 ae ...u..?..Y...3..
A.5. ChaCha20-Poly1305 AEAD Decryption
Below we see decrypting a message. We receive a ciphertext, a nonce,
and a tag. We know the key. We will check the tag and then
(assuming that it validates) decrypt the ciphertext. In this
particular protocol, we'll assume that there is no padding of the
plaintext.
Nir & Langley Informational [Page 41]
RFC 7539 ChaCha20 & Poly1305 May 2015
The key:
000 1c 92 40 a5 eb 55 d3 8a f3 33 88 86 04 f6 b5 f0 ..@..U...3......
016 47 39 17 c1 40 2b 80 09 9d ca 5c bc 20 70 75 c0 G9..@+....\. pu.
Ciphertext:
000 64 a0 86 15 75 86 1a f4 60 f0 62 c7 9b e6 43 bd d...u...`.b...C.
016 5e 80 5c fd 34 5c f3 89 f1 08 67 0a c7 6c 8c b2 ^.\.4\....g..l..
032 4c 6c fc 18 75 5d 43 ee a0 9e e9 4e 38 2d 26 b0 Ll..u]C....N8-&.
048 bd b7 b7 3c 32 1b 01 00 d4 f0 3b 7f 35 58 94 cf ...<2.....;.5X..
064 33 2f 83 0e 71 0b 97 ce 98 c8 a8 4a bd 0b 94 81 3/..q......J....
080 14 ad 17 6e 00 8d 33 bd 60 f9 82 b1 ff 37 c8 55 ...n..3.`....7.U
096 97 97 a0 6e f4 f0 ef 61 c1 86 32 4e 2b 35 06 38 ...n...a..2N+5.8
112 36 06 90 7b 6a 7c 02 b0 f9 f6 15 7b 53 c8 67 e4 6..{j|.....{S.g.
128 b9 16 6c 76 7b 80 4d 46 a5 9b 52 16 cd e7 a4 e9 ..lv{.MF..R.....
144 90 40 c5 a4 04 33 22 5e e2 82 a1 b0 a0 6c 52 3e .@...3"^.....lR>
160 af 45 34 d7 f8 3f a1 15 5b 00 47 71 8c bc 54 6a .E4..?..[.Gq..Tj
176 0d 07 2b 04 b3 56 4e ea 1b 42 22 73 f5 48 27 1a ..+..VN..B"s.H'.
192 0b b2 31 60 53 fa 76 99 19 55 eb d6 31 59 43 4e ..1`S.v..U..1YCN
208 ce bb 4e 46 6d ae 5a 10 73 a6 72 76 27 09 7a 10 ..NFm.Z.s.rv'.z.
224 49 e6 17 d9 1d 36 10 94 fa 68 f0 ff 77 98 71 30 I....6...h..w.q0
240 30 5b ea ba 2e da 04 df 99 7b 71 4d 6c 6f 2c 29 0[.......{qMlo,)
256 a6 ad 5c b4 02 2b 02 70 9b ..\..+.p.
The nonce:
000 00 00 00 00 01 02 03 04 05 06 07 08 ............
The AAD:
000 f3 33 88 86 00 00 00 00 00 00 4e 91 .3........N.
Received Tag:
000 ee ad 9d 67 89 0c bb 22 39 23 36 fe a1 85 1f 38 ...g..."9#6....8
Nir & Langley Informational [Page 42]
RFC 7539 ChaCha20 & Poly1305 May 2015
First, we calculate the one-time Poly1305 key
@@@ ChaCha state with key setup
61707865 3320646e 79622d32 6b206574
a540921c 8ad355eb 868833f3 f0b5f604
c1173947 09802b40 bc5cca9d c0757020
00000000 00000000 04030201 08070605
@@@ ChaCha state after 20 rounds
a94af0bd 89dee45c b64bb195 afec8fa1
508f4726 63f554c0 1ea2c0db aa721526
11b1e514 a0bacc0f 828a6015 d7825481
e8a4a850 d9dcbbd6 4c2de33a f8ccd912
@@@ out bytes:
bd:f0:4a:a9:5c:e4:de:89:95:b1:4b:b6:a1:8f:ec:af:
26:47:8f:50:c0:54:f5:63:db:c0:a2:1e:26:15:72:aa
Poly1305 one-time key:
000 bd f0 4a a9 5c e4 de 89 95 b1 4b b6 a1 8f ec af ..J.\.....K.....
016 26 47 8f 50 c0 54 f5 63 db c0 a2 1e 26 15 72 aa &G.P.T.c....&.r.
Next, we construct the AEAD buffer
Poly1305 Input:
000 f3 33 88 86 00 00 00 00 00 00 4e 91 00 00 00 00 .3........N.....
016 64 a0 86 15 75 86 1a f4 60 f0 62 c7 9b e6 43 bd d...u...`.b...C.
032 5e 80 5c fd 34 5c f3 89 f1 08 67 0a c7 6c 8c b2 ^.\.4\....g..l..
048 4c 6c fc 18 75 5d 43 ee a0 9e e9 4e 38 2d 26 b0 Ll..u]C....N8-&.
064 bd b7 b7 3c 32 1b 01 00 d4 f0 3b 7f 35 58 94 cf ...<2.....;.5X..
080 33 2f 83 0e 71 0b 97 ce 98 c8 a8 4a bd 0b 94 81 3/..q......J....
096 14 ad 17 6e 00 8d 33 bd 60 f9 82 b1 ff 37 c8 55 ...n..3.`....7.U
112 97 97 a0 6e f4 f0 ef 61 c1 86 32 4e 2b 35 06 38 ...n...a..2N+5.8
128 36 06 90 7b 6a 7c 02 b0 f9 f6 15 7b 53 c8 67 e4 6..{j|.....{S.g.
144 b9 16 6c 76 7b 80 4d 46 a5 9b 52 16 cd e7 a4 e9 ..lv{.MF..R.....
160 90 40 c5 a4 04 33 22 5e e2 82 a1 b0 a0 6c 52 3e .@...3"^.....lR>
176 af 45 34 d7 f8 3f a1 15 5b 00 47 71 8c bc 54 6a .E4..?..[.Gq..Tj
192 0d 07 2b 04 b3 56 4e ea 1b 42 22 73 f5 48 27 1a ..+..VN..B"s.H'.
208 0b b2 31 60 53 fa 76 99 19 55 eb d6 31 59 43 4e ..1`S.v..U..1YCN
224 ce bb 4e 46 6d ae 5a 10 73 a6 72 76 27 09 7a 10 ..NFm.Z.s.rv'.z.
240 49 e6 17 d9 1d 36 10 94 fa 68 f0 ff 77 98 71 30 I....6...h..w.q0
256 30 5b ea ba 2e da 04 df 99 7b 71 4d 6c 6f 2c 29 0[.......{qMlo,)
272 a6 ad 5c b4 02 2b 02 70 9b 00 00 00 00 00 00 00 ..\..+.p........
288 0c 00 00 00 00 00 00 00 09 01 00 00 00 00 00 00 ................
Nir & Langley Informational [Page 43]
RFC 7539 ChaCha20 & Poly1305 May 2015
We calculate the Poly1305 tag and find that it matches
Calculated Tag:
000 ee ad 9d 67 89 0c bb 22 39 23 36 fe a1 85 1f 38 ...g..."9#6....8
Finally, we decrypt the ciphertext
Plaintext::
000 49 6e 74 65 72 6e 65 74 2d 44 72 61 66 74 73 20 Internet-Drafts
016 61 72 65 20 64 72 61 66 74 20 64 6f 63 75 6d 65 are draft docume
032 6e 74 73 20 76 61 6c 69 64 20 66 6f 72 20 61 20 nts valid for a
048 6d 61 78 69 6d 75 6d 20 6f 66 20 73 69 78 20 6d maximum of six m
064 6f 6e 74 68 73 20 61 6e 64 20 6d 61 79 20 62 65 onths and may be
080 20 75 70 64 61 74 65 64 2c 20 72 65 70 6c 61 63 updated, replac
096 65 64 2c 20 6f 72 20 6f 62 73 6f 6c 65 74 65 64 ed, or obsoleted
112 20 62 79 20 6f 74 68 65 72 20 64 6f 63 75 6d 65 by other docume
128 6e 74 73 20 61 74 20 61 6e 79 20 74 69 6d 65 2e nts at any time.
144 20 49 74 20 69 73 20 69 6e 61 70 70 72 6f 70 72 It is inappropr
160 69 61 74 65 20 74 6f 20 75 73 65 20 49 6e 74 65 iate to use Inte
176 72 6e 65 74 2d 44 72 61 66 74 73 20 61 73 20 72 rnet-Drafts as r
192 65 66 65 72 65 6e 63 65 20 6d 61 74 65 72 69 61 eference materia
208 6c 20 6f 72 20 74 6f 20 63 69 74 65 20 74 68 65 l or to cite the
224 6d 20 6f 74 68 65 72 20 74 68 61 6e 20 61 73 20 m other than as
240 2f e2 80 9c 77 6f 72 6b 20 69 6e 20 70 72 6f 67 /...work in prog
256 72 65 73 73 2e 2f e2 80 9d ress./...
Appendix B. Performance Measurements of ChaCha20
The following measurements were made by Adam Langley for a blog post
published on February 27th, 2014. The original blog post was
available at the time of this writing at
<https://www.imperialviolet.org/2014/02/27/tlssymmetriccrypto.html>.
+----------------------------+-------------+-------------------+
| Chip | AES-128-GCM | ChaCha20-Poly1305 |
+----------------------------+-------------+-------------------+
| OMAP 4460 | 24.1 MB/s | 75.3 MB/s |
| Snapdragon S4 Pro | 41.5 MB/s | 130.9 MB/s |
| Sandy Bridge Xeon (AES-NI) | 900 MB/s | 500 MB/s |
+----------------------------+-------------+-------------------+
Table 1: Speed Comparison
Nir & Langley Informational [Page 44]
RFC 7539 ChaCha20 & Poly1305 May 2015
Acknowledgements
ChaCha20 and Poly1305 were invented by Daniel J. Bernstein. The AEAD
construction and the method of creating the one-time Poly1305 key
were invented by Adam Langley.
Thanks to Robert Ransom, Watson Ladd, Stefan Buhler, Dan Harkins, and
Kenny Paterson for their helpful comments and explanations. Thanks
to Niels Moller for suggesting the more efficient AEAD construction
in this document. Special thanks to Ilari Liusvaara for providing
extra test vectors, helpful comments, and for being the first to
attempt an implementation from this document. Thanks to Sean
Parkinson for suggesting improvements to the examples and the
pseudocode. Thanks to David Ireland for pointing out a bug in the
pseudocode, and to Stephen Farrell and Alyssa Rowan for pointing out
missing advise in the security considerations.
Special thanks goes to Gordon Procter for performing a security
analysis of the composition and publishing [Procter].
Authors' Addresses
Yoav Nir
Check Point Software Technologies, Ltd.
5 Hasolelim St.
Tel Aviv 6789735
Israel
EMail: ynir.ietf@gmail.com
Adam Langley
Google, Inc.
EMail: agl@google.com
Nir & Langley Informational [Page 45]