
Network Working Group N. Williams
Request for Comments: 5588 Sun
Category: Standards Track July 2009

 Generic Security Service Application Program Interface (GSS-API)
 Extension for Storing Delegated Credentials

Abstract

 This document defines a new function for the Generic Security Service
 Application Program Interface (GSS-API), which allows applications to
 store delegated (and other) credentials in the implicit GSS-API
 credential store. This is needed for GSS-API applications to use
 delegated credentials as they would use other credentials.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Table of Contents

 1. Introduction ..2
 2. Conventions Used in This Document3
 3. GSS_Store_cred() ..3
 4. C-Bindings ..5
 5. Examples ..6
 6. Security Considerations ...6
 7. Normative References ..7

Williams Standards Track [Page 1]

RFC 5588 GSS_Store_cred() July 2009

1. Introduction

 The GSS-API [RFC2743] clearly assumes that credentials exist in an
 implicit store whence they can be acquired using GSS_Acquire_cred()
 and GSS_Add_cred() or through use of the default credential.
 Multiple credential stores may exist on a given host, but only one
 store may be accessed by GSS_Acquire_cred() and GSS_Add_cred() at any
 given time.

 This assumption can be seen in Sections 1.1.1.2 and 1.1.1.3 of
 [RFC2743] as well as in Section 3.5 of [RFC2744].

 Applications may be able to change the credential store from which
 credentials can be acquired, either by changing user contexts (where
 the applications have the privilege to do so) or by other means
 (where a user may have multiple credential stores).

 Some GSS-API acceptor applications always change user contexts, after
 accepting a GSS-API security context and making appropriate
 authorization checks, to the user context corresponding to the
 initiator principal name or to a context requested by the initiator.
 The means by which credential stores are managed are generally beyond
 the scope of the GSS-API.

 In the case of delegated credential handles however, such credentials
 do not exist in the acceptor’s credential store or in the credential
 stores of the user contexts to which the acceptor application might
 change. The GSS-API provides no mechanism by which delegated
 credential handles can be made available for acquisition through
 GSS_Acquire_cred()/GSS_Add_cred(). The GSS-API also does not provide
 any credential import/export interfaces like the GSS-API context
 import/export interfaces.

 Thus, acceptors are limited to making only direct use of delegated
 credential handles and only with GSS_Init_sec_context(),
 GSS_Inquire_cred*(), and GSS_Release_cred(). This limitation is
 particularly onerous on Unix systems where a call to exec() to
 replace the process image obliterates any delegated credentials
 handle that may exist in that process.

 In order to make delegated credentials generally as useful as
 credentials that can be acquired with GSS_Acquire_cred() and
 GSS_Add_cred(), a primitive is needed that allows storing of
 credentials in the implicit credential store. We call this primitive
 "GSS_Store_cred()".

Williams Standards Track [Page 2]

RFC 5588 GSS_Store_cred() July 2009

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. GSS_Store_cred()

 Inputs:

 o input_cred_handle CREDENTIAL HANDLE, -- credential to store; MUST
 NOT be GSS_C_NO_CREDENTIAL.

 o cred_usage INTEGER -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
 2=ACCEPT-ONLY.

 o desired_mech_element OBJECT IDENTIFIER, -- if GSS_C_NULL_OID, then
 store all the elements of the input_cred_handle, otherwise, store
 only the element of the corresponding mechanism.

 o overwrite_cred BOOLEAN, -- if TRUE, replace any credential for the
 same principal in the credential store.

 o default_cred BOOLEAN -- advisory input; if TRUE, make the stored
 credential available as the default credential (for acquisition
 with GSS_C_NO_NAME as the desired name or for use as
 GSS_C_NO_CREDENTIAL).

 Outputs:

 o major_status INTEGER.

 o minor_status INTEGER.

 o mech_elements_stored SET OF OBJECT IDENTIFIER, -- the set of
 mechanism OIDs for which credential elements were successfully
 stored.

 o cred_usage_stored INTEGER -- like cred_usage, but indicates what
 kind of credential was stored (useful when the cred_usage input
 parameter is set to INITIATE-AND-ACCEPT).

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the credentials were successfully
 stored.

Williams Standards Track [Page 3]

RFC 5588 GSS_Store_cred() July 2009

 o GSS_S_CREDENTIALS_EXPIRED indicates that the input credentials had
 expired or expired before they could be stored.

 o GSS_S_NO_CRED indicates that no input credentials were given.

 o GSS_S_UNAVAILABLE indicates that the credential store is not
 available.

 o GSS_S_DUPLICATE_ELEMENT indicates that an element of the input
 credential could not be stored because a credential for the same
 principal exists in the current credential store and the
 overwrite_cred input argument was FALSE.

 o GSS_S_FAILURE indicates that the credential could not be stored
 for some other reason. The minor status code may provide more
 information if a non-GSS_C_NULL_OID desired_mech_element was
 given.

 GSS_Store_cred() is used to store, in the current credential store, a
 given credential that has either been acquired from a different
 credential store or been accepted as a delegated credential.

 Specific mechanism elements of a credential can be stored one at a
 time by specifying a non-GSS_C_NULL_OID mechanism OID as the
 desired_mech_element input argument; in which case, the minor status
 output SHOULD have a mechanism-specific value when the major status
 is not GSS_S_COMPLETE.

 The initiator, acceptor, or both usages of the input credential may
 be stored as per the cred_usage input argument.

 The credential elements that were actually stored, when the major
 status is GSS_S_COMPLETE, are indicated through the cred_usage_stored
 and mech_elements_stored function outputs.

 If credentials already exist in the current store for the principal
 of the input_cred_handle, then those credentials are not replaced
 with the input credentials unless the overwrite_cred input argument
 is TRUE.

 In the GSS-API, the default credential can be used by using
 GSS_C_NO_CREDENTIAL or a CREDENTIAL handle acquired by calling
 GSS_Acquire_cred() or GSS_Add_cred() with the desired_name input set
 to GSS_C_NO_NAME.

 If the default_cred input argument is TRUE, and the input credential
 can be successfully stored, then the input credential SHOULD be
 stored as the default credential (see above).

Williams Standards Track [Page 4]

RFC 5588 GSS_Store_cred() July 2009

 If the current credential store has no default credential (see
 above), then the implementation MAY make the stored credentials
 available as the default credential regardless of the value of the
 default_cred input argument.

4. C-Bindings

 The C-Bindings for GSS_Store_cred() make use of types from and are
 designed based on the style of the GSS-APIv2 C-Bindings [RFC2744].

 OM_uint32 gss_store_cred(
 OM_uint32 *minor_status,
 gss_cred_id_t input_cred_handle,
 gss_cred_usage_t cred_usage,
 const gss_OID desired_mech,
 OM_uint32 overwrite_cred,
 OM_uint32 default_cred,
 gss_OID_set *elements_stored,
 gss_cred_usage_t *cred_usage_stored)

 Figure 1

 The two boolean arguments, ’overwrite_cred’ and ’default_cred’, are
 typed as OM_uint32; 0 corresponds to FALSE, non-zero values
 correspond to TRUE.

Williams Standards Track [Page 5]

RFC 5588 GSS_Store_cred() July 2009

5. Examples

 The intended usage of GSS_Store_cred() is to make delegated
 credentials available to child processes of GSS-API acceptor
 applications. Example pseudo-code:

 /*
 * <GSS_Accept_sec_context() loop resulting in GSS_S_COMPLETE,
 * an initiator name (hereafter, "src_name") and a delegated
 * credential handle (hereafter "deleg_cred").>
 *
 * <"requested_username" is a username derived from the
 * initiator name or explicitly requested by the initiator
 * application.>
 */
 ...

 if (authorize_gss_client(src_name, requested_username)) {
 /*
 * For Unix-type platforms this may mean calling setuid() and
 * it may or may not also mean setting/unsetting such
 * environment variables as KRB5CCNAME and what not -- all
 * OS-specific details.
 */
 if (change_user_context(requested_username))
 (void) gss_store_cred(&minor_status, deleg_cred,
 GSS_C_INITIATE, actual_mech,
 0, 1, NULL, NULL);
 }
 else ...
 }
 else ...

6. Security Considerations

 Acceptor applications MUST only store delegated credentials into
 appropriate credential stores and only after proper authorization of
 the authenticated initiator principal to the requested service(s).

 Acceptor applications that have no use for delegated credentials MUST
 release them (such acceptor applications that use the GSS-API C-
 Bindings may simply provide a NULL value for the
 delegated_cred_handle argument to gss_accept_sec_context()).

Williams Standards Track [Page 6]

RFC 5588 GSS_Store_cred() July 2009

7. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC2744] Wray, J., "Generic Security Service API Version 2 :
 C-bindings", RFC 2744, January 2000.

Author’s Address

 Nicolas Williams
 Sun Microsystems
 5300 Riata Trace Ct
 Austin, TX 78727
 US

 EMail: Nicolas.Williams@sun.com

Williams Standards Track [Page 7]

