
Network Working Group J. Touch
Request for Comments: 4953 USC/ISI
Category: Informational July 2007

 Defending TCP Against Spoofing Attacks

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 Recent analysis of potential attacks on core Internet infrastructure
 indicates an increased vulnerability of TCP connections to spurious
 resets (RSTs), sent with forged IP source addresses (spoofing). TCP
 has always been susceptible to such RST spoofing attacks, which were
 indirectly protected by checking that the RST sequence number was
 inside the current receive window, as well as via the obfuscation of
 TCP endpoint and port numbers. For pairs of well-known endpoints
 often over predictable port pairs, such as BGP or between web servers
 and well-known large-scale caches, increases in the path bandwidth-
 delay product of a connection have sufficiently increased the receive
 window space that off-path third parties can brute-force generate a
 viable RST sequence number. The susceptibility to attack increases
 with the square of the bandwidth, and thus presents a significant
 vulnerability for recent high-speed networks. This document
 addresses this vulnerability, discussing proposed solutions at the
 transport level and their inherent challenges, as well as existing
 network level solutions and the feasibility of their deployment.
 This document focuses on vulnerabilities due to spoofed TCP segments,
 and includes a discussion of related ICMP spoofing attacks on TCP
 connections.

Touch Informational [Page 1]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

Table of Contents

 1. Introduction ..3
 2. Background ..4
 2.1. Review of TCP Windows5
 2.2. Recent BGP Attacks Using TCP RSTs6
 2.3. TCP RST Vulnerability6
 2.4. What Changed - the Ever-Opening Advertised Receive Window ..7
 3. Proposed Solutions and Mitigations10
 3.1. Transport Layer Solutions10
 3.1.1. TCP MD5 Authentication11
 3.1.2. TCP RST Window Attenuation11
 3.1.3. TCP Timestamp Authentication12
 3.1.4. Other TCP Cookies13
 3.1.5. Other TCP Considerations13
 3.1.6. Other Transport Protocol Solutions14
 3.2. Network Layer (IP) Solutions14
 3.2.1. Address Filtering15
 3.2.2. IPsec ..16
 4. ICMP ...17
 5. Issues ...18
 5.1. Transport Layer (e.g., TCP)18
 5.2. Network Layer (IP) ..19
 5.3. Application Layer ...21
 5.4. Link Layer ..21
 5.5. Issues Discussion ...21
 6. Security Considerations ..22
 7. Conclusions ..23
 8. Acknowledgments ..23
 9. Informative References ...24

Touch Informational [Page 2]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

1. Introduction

 Analysis of the Internet infrastructure has recently demonstrated a
 new version of a vulnerability in BGP connections between core
 routers using an attack based on RST spoofing from off-path attackers
 [9][10][48]. The attack itself is not new, having been documented
 nearly six years earlier [20]. Such connections, typically using
 TCP, can be susceptible to off-path third-party reset (RST) segments
 with forged source addresses (spoofed), which terminate the TCP
 connection. BGP routers react to a terminated TCP connection in
 various ways, which can amplify the impact of an attack, ranging from
 restarting the connection to deciding that the other router is
 unreachable and thus flushing the BGP routes [37]. This sort of
 attack affects other protocols besides BGP, involving any long-lived
 connection between well-known endpoints. The impact on the Internet
 infrastructure can be substantial (especially for the BGP case), and
 warrants immediate attention.

 TCP, like many other protocols, can be susceptible to these off-path
 third-party spoofing attacks. Such attacks rely on the increase of
 commodity platforms supporting public access to previously privileged
 resources, such as system-level (i.e., root) access. Given such
 access, it is trivial for anyone to generate a packet with any header
 desired.

 This, coupled with the lack of sufficient address filtering to drop
 such spoofed traffic, can increase the potential for off-path third-
 party spoofing attacks [9][10][48]. Proposed solutions include the
 deployment of existing Internet network and transport security as
 well as modifications to transport protocols that reduce its
 vulnerability to generated attacks [13][15][20][36][46].

 One way to defeat spoofing is to validate the segments of a
 connection, either at the transport level or the network level. TCP
 with MD5 extensions provides this authentication at the transport
 level, and IPsec provides authentication at the network level
 [20][24][27]. In both cases, their deployment overhead may be
 prohibitive, e.g., it may not be feasible for public services, such
 as web servers, to be configured with the appropriate certificate
 authorities of large numbers of peers (for IPsec using the Internet
 Key Exchange Protocol (IKE)), or shared secrets (for IPsec in
 shared-secret mode, or TCP/MD5), because many clients may need to be
 configured rapidly without external assistance. Services located on
 public web servers connecting to large-scale caches or BGP with
 larger numbers of peers can fall into this category.

Touch Informational [Page 3]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 The remainder of this document outlines the recent attack scenario in
 detail and describes and compares a variety of solutions, including
 existing solutions based on TCP/MD5 and IPsec, as well as recently
 proposed solutions, including modifications to TCP’s RST processing
 [36], modifications to TCP’s timestamp processing [34], and
 modifications to IPsec and TCP/MD5 keying [45]. This document
 focuses on spoofing of TCP segments, although a discussion of related
 spoofing of ICMP packets based on spoofed TCP contents is also
 discussed.

 Note that the description of these attacks is not new; attacks using
 RSTs on BGP have been known since 1998, and were the reason for the
 development of TCP/MD5 [20]. The recent attack scenario was first
 documented by Convery at a NANOG (North American Network Operators’
 Group) meeting in 2003, but that analysis assumed the entire sequence
 space (2^32 packets) needed to be covered for an attack to succeed
 [10]. Watson’s more detailed analysis discovered that a single
 packet anywhere in the current window could succeed at an attack
 [48]. This document adds the observation that susceptibility to
 attack is directly proportional to the square of bandwidth, due to
 the coupling between the linear increase in receive window size and
 linear increase in rate of a potential attack, as well as comparing
 the variety of more recent proposals, including modifications to TCP,
 use of IPsec, and use of TCP/MD5 to resist such attacks.

2. Background

 The recent analysis of potential attacks on BGP has again raised the
 issue of TCP’s vulnerability to off-path third-party spoofing attacks
 [9][10][48]. A variety of such attacks have been known for several
 years, including sending RSTs, SYNs, and even ACKs in an attempt to
 affect an existing connection or to load down servers. These attacks
 often combine external knowledge (e.g., to indicate the IP addresses
 to attack, the destination port number, and sometimes the Initial
 Sequence Number (ISN)) with brute-force capabilities enabled by
 modern computers and network bandwidths (e.g., to scan all source
 ports or an entire window space). Overall, such attacks are
 countered by the use of some form of authentication at the network
 (e.g., IPsec), transport (e.g., SYN cookies, TCP/MD5), or other
 layers. TCP already includes a weak form of such authentication in
 its check of segment sequence numbers against the current receiver
 window. Increases in the bandwidth-delay product for certain long
 connections have sufficiently weakened this type of weak
 authentication to make reliance on it inadvisable.

Touch Informational [Page 4]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

2.1. Review of TCP Windows

 Before proceeding, it is useful to review the terminology and
 components of TCP’s windowing algorithm. TCP connections have three
 kinds of windows [1][35]:

 o Send window (SND.WND): the latest send window size.

 o Receive window (RCV.WND): the latest advertised receive window
 size.

 o Congestion window (CWND): the window determined by congestion
 feedback that limits how much of RCV.WND can be in-flight in a
 round-trip time.

 For TCP connections in most modern implementations, SND.WND and
 RCV.WND are the size of the corresponding send and receive socket
 buffers, and are configurable using socket buffer resizing commands.

 CWND determines how much data can be in transit in a round-trip time,
 SND.WND determines how much data the sender is willing to store on
 its side for possible retransmission due to loss, and RCV.WND
 determines the ability of the receiver to accommodate that loss and
 reorder received packets. CWND never grows beyond RCV.WND.

 High bandwidth-delay product networks need CWND to be sufficiently
 large to accommodate as much data as can be in transit in a round
 trip time; otherwise, their performance will suffer. As a result, it
 is recommended that users and various automatic programs increase
 RCV.WND to at least the size of bandwidth*delay (the bandwidth-delay
 product) [23][38].

 As the bandwidth-delay product of the network increases, however,
 such increases in the advertised receive window can cause increased
 susceptibility to spoofing attacks, as the remainder of this document
 shows. This assumes, however, that the receive window size (e.g.,
 via increased receive socket buffer configuration) is increased with
 the increased bandwidth-delay product; if not, then connection
 performance will degrade, but susceptibility to spoofing attacks will
 increase only linearly (with the rate at which the attacker can send
 spoofed packets), not as the square of the bandwidth. Note that
 either increase depends on the receive window itself, and is
 independent of the congestion state or amount of data transmitted.

Touch Informational [Page 5]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

2.2. Recent BGP Attacks Using TCP RSTs

 BGP represents a particular vulnerability to spoofing attacks because
 it uses TCP connectivity to infer routability, so losing a TCP
 connection with a BGP peer can result in the flushing of routes to
 that peer [37].

 Until six years ago, such connections were assumed difficult to
 attack because they were described by a few comparatively obscure
 parameters [20]. Most TCP connections are protected by multiple
 levels of obfuscation except at the endpoints of the connection:

 o Both endpoint addresses are usually not well-known; although
 server addresses are advertised, clients are somewhat anonymous.

 o Both port numbers are usually not well-known; the server’s is
 usually advertised (representing the service), but the client’s is
 typically sufficiently unpredictable to an off-path third-party.

 o Valid sequence number space is not well-known.

 o Connections are relatively short-lived and valid sequence space
 changes, so any attempt to guess (e.g., by external knowledge or
 brute force) the above information is unlikely to be useful.

 BGP represents an exception to the above criteria (though not the
 only case). Both endpoints can be well-known, or guessed using hints
 from part of an AS path. The destination port is typically fixed to
 indicate the BGP service. The source port used by a BGP router is
 sometimes fixed and advertised to enable firewall configuration; even
 when not fixed, there are only approximately 65,000 valid source
 ports, which thus may be exhaustively attacked. Connections are
 long- lived, and, as noted before, some BGP implementations interpret
 successive TCP connection failures as routing failures, discarding
 the corresponding routing information. In addition, the valid
 sequence number space once thought to provide some protection has
 been significantly weakened by increasing advertised receive window
 sizes.

2.3. TCP RST Vulnerability

 TCP has a known vulnerability to third-party spoofed segments. SYN
 flooding consumes server resources in half-open connections,
 affecting the server’s ability to open new connections [4][11]. ACK
 spoofing can cause connections to transmit too much data too quickly,
 creating network congestion and segment loss, causing connections to
 slow to a crawl. In the most recent attacks on BGP, RSTs cause
 connections to be dropped. As noted earlier, some BGP

Touch Informational [Page 6]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 implementations interpret TCP connection termination, or a series of
 such failures, as a network failure [37]. This causes routers to
 drop the BGP routing information already exchanged, in addition to
 inhibiting their ongoing exchanges, thus amplifying the impact of the
 attack. The result can affect routing paths throughout the Internet.

 The dangerous effects of RSTs on TCP have been known for many years,
 even when used by the legitimate endpoints of a connection. TCP RSTs
 cause the receiver to drop all connection state; because the source
 is not required to maintain a TIME_WAIT state, such a RST can cause
 premature reuse of address/port pairs, potentially allowing segments
 from a previous connection to contaminate the data of a new
 connection, known as TIME_WAIT assassination [8]. In this case,
 assassination occurs inadvertently as the result of duplicate
 segments from a legitimate source, and can be avoided by blocking RST
 processing while in TIME_WAIT. However, assassination can be useful
 to deliberately reduce the state held at servers; this requires that
 the source of the RSTs go into TIME_WAIT state to avoid such hazards,
 and that RSTs are not blocked in the TIME_WAIT state [12].

 Firewalls and load balancers, so-called ’middleboxes’, sometimes emit
 RSTs on behalf of transited connections to optimize server
 performance, as noted in RFC 3360 [14]. This is effectively an on-
 path RST attack in which the RSTs are sent for benign or beneficial
 intent. There are numerous hazards with such use of RSTs, outlined
 in that RFC.

2.4. What Changed - the Ever-Opening Advertised Receive Window

 RSTs represent a hazard to TCP, especially when completely
 unvalidated. Fortunately, there are a number of obfuscation
 mechanisms that make it difficult for off-path third parties to forge
 (spoof) valid RSTs, as noted earlier. We have already shown it is
 easy to learn both endpoint addresses and ports for some protocols,
 notably BGP. The final obfuscation is the segment sequence number.

 TCP segments include a sequence number, which enables out-of-order
 receiver processing as well as duplicate detection. The sequence
 number space is also used to manage congestion, and indicates the
 index of the next byte to be transmitted or received. For RSTs, this
 is relevant because legitimate RSTs use the next sequence number in
 the transmitter window, and the receiver checks that incoming RSTs
 have a sequence number in the expected receive window. Such
 processing is intended to eliminate duplicate segments (somewhat moot
 for RSTs, though), and to drop RSTs that were part of previous
 connections.

Touch Informational [Page 7]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 TCP uses two window mechanisms, a primary mechanism for reordering
 and congestion control (which uses a space of 32 bits), and a
 secondary mechanism that scales this window [23][35]. The valid
 advertised receive window is a fraction, not to exceed approximately
 half, of this space, or ˜2 billion (2 * 10^9, i.e., 2E9 or 2 U.S.
 billion). Under typical configurations, the majority of TCP
 connections open to a very small fraction of this space, e.g.,
 10,000-60,000(approximately 5-100 segments). This is because the
 advertised receive window typically matches the receive socket buffer
 size. It is recommended that this buffer be tuned to match the needs
 of the connection, either manually or by automatic external means
 [38].

 On a low-loss path, the advertised receive window should be
 configured to match the path bandwidth-delay product, including
 buffering delays (assume 1 packet/hop) [38]. Many paths in the
 Internet have end-to-end bandwidths of under 1 Mbps, latencies under
 100 ms, and are under 15 hops, resulting in fairly small advertised
 receive windows as above (under 35,000 bytes). Under these
 conditions, and further assuming that the initial sequence number is
 suitably (pseudo-randomly) chosen, a valid guessed sequence number
 would have odds of 1 in 57,000 of falling within the advertised
 receive window. Put differently, a blind (i.e., off-path) attacker
 would need to send 57,000 RSTs with suitably spaced sequence number
 guesses within one round-trip time to successfully reset a
 connection. At 1 Mbps, 57,000 (40 byte) RSTs would take only 20
 seconds to transmit, but this presumes that both IP addresses and
 both ports are known. Absent knowledge of the source port, an off-
 path spoofer would need to try at least the entire range of 49152-
 65535, or 16,384 different ports, resulting in an attack that would
 take over 91 hours. Because most TCP connections are comparatively
 short-lived, even this moderate variation in the source port is
 sufficient for such environments, although further port randomization
 may be recommended [29].

 Recent use of high bandwidth paths of 10 Gbps and higher results in
 bandwidth-delay products over 125 MB -- approximately 1/10 of TCP’s
 overall maximum advertised receive window size (i.e., assuming the
 receive socket buffers are increased as much as possible) excluding
 scale, assuming the receiver allocates sufficient buffering (as
 discussed in Section 2). Even under networks that are ten times
 slower (1 Gbps), the active advertised receive window covers 1/100th
 of the overall window size. At these speeds, it takes only 10-100
 packets, or less than 32 microseconds, to correctly guess a valid
 sequence number and kill a connection. A table of corresponding
 exposure to various amounts of RSTs is shown below, for various line
 rates, assuming the more conventional 100-ms latencies (though even
 100 ms is large for BGP cases):

Touch Informational [Page 8]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 BW BW*delay RSTs needed Time needed
 --
 10 Gbps 125 MB 35 1 us (microsecond)
 1 Gbps 12.5 MB 344 110 us
 100 Mbps 1.25 MB 3,436 10 ms (millisecond)
 10 Mbps 0.125 MB 34,360 1 second
 1 Mbps 0.0125 MB 343,598 2 minutes
 100 Kbps 0.00125 MB 3,435,974 3 hours

 Figure 1: Time needed to kill a connection

 This table demonstrates that the effect of bandwidth on the
 vulnerability is squared; for every increase in bandwidth, there is a
 linear decrease in the number of sequence number guesses needed, as
 well as a linear decrease in the time needed to send a set of
 guesses. Notably, as inter-router link bandwidths approach 1 Mbps,
 an ’exhaustive’ attack becomes practical. Checking that the RST
 sequence number is somewhere in the advertised receive window, out of
 the overall maximum receive window (2^32), is an insufficient
 obfuscation.

 Note that this table makes a number of assumptions:

 1. The overall bandwidth-delay product is relatively fixed.

 2. Traffic losses are negligible (insufficient to affect the
 congestion window over the duration of most of the connection).

 3. The advertised receive window is a large fraction of the overall
 maximum receive window size, e.g., because the receive socket
 buffers are set to match a large bandwidth-delay product.

 4. The attack bandwidth is similar to the end-to-end path bandwidth.

 Of these assumptions, the last two are more notable. The issue of
 receive socket buffers was discussed in Section 2. Figure 1
 summarized the time to a successful attack based on large advertised
 receive windows, but many current commercial routers have limits of
 128 KB for large devices, 32 KB for medium, and as little as 4 KB for
 modest ones. Figure 2 shows the time and bandwidths needed to
 accomplish an attack on BGP sessions in the time shown for 100-ms
 latencies; for even short-range network latencies (10 ms), these
 sessions can be still be attacked over short timescales (minutes to
 hours).

Touch Informational [Page 9]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 Receive
 BW Buffer Size RSTs needed Time needed
 --
 10 Mbps 0.128 MB 33,555 1 second
 3 Mbps 0.032 MB 134,218 40 seconds
 300 Kbps 0.004 MB 1,073,742 1 hour

 Figure 2: Time needed to kill a connection with limited buffers

 The issue of the attack bandwidth is considered reasonable as
 follows:

 1. RSTs are substantially easier to send than data; they can be
 precomputed and they are smaller than data packets (40 bytes).

 2. Although susceptible connections use somewhat less ubiquitous
 high-bandwidth paths, the attack may be distributed, at which
 point only the ingress link of the attack is the primary
 limitation.

 3. For the purposes of the above table, we assume that the ingress at
 the attack has the same bandwidth as the path, as an
 approximation.

 The previous sections discussed the nature of the recent attacks on
 BGP due to the vulnerability of TCP to RST spoofing attacks, due
 largely to recent increases in the fraction of the TCP advertised
 receive window space in use for a single, long-lived connection.

3. Proposed Solutions and Mitigations

 TCP currently authenticates received RSTs using the address and port
 pair numbers, and checks that the sequence number is inside the valid
 receiver window. The previous section demonstrated how TCP has
 become more vulnerable to RST spoofing attacks due to the increases
 in the receive window size. There are a number of current and
 proposed solutions to this vulnerability, all attempting to provide
 evidence that a received RST is legitimate.

3.1. Transport Layer Solutions

 The transport layer represents the last place that segments can be
 authenticated before they affect connection management. TCP has a
 variety of current and proposed mechanisms to increase the
 authentication of segments, protecting against both off-path and on-
 path third-party spoofing attacks. Other transport protocols, such
 as SCTP and DCCP, also have limited antispoofing mechanisms.

Touch Informational [Page 10]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

3.1.1. TCP MD5 Authentication

 An extension to TCP supporting MD5 authentication was developed in
 1998 specifically to authenticate BGP connections (although it can be
 used for any TCP connection) [20]. The extension relies on a pre-
 shared secret key to authenticate the entire TCP segment, including
 the data, TCP header, and TCP pseudo-header (certain fields of the IP
 header). All segments are protected, including RSTs, to be accepted
 only when their signature matches. This option, although widely
 deployed in Internet routers, is considered undeployable for
 widespread use because the need for pre-shared keys [3][30]. It
 further is considered computationally expensive for either hosts or
 routers due to the overhead of MD5 [43][44].

 There are also concerns about the use of MD5 due to recent collision-
 based attacks [22]. Similar concerns exist for SHA-1, and the IETF
 is currently evaluating how these attacks impact the recommendation
 for using these hashes, both in TCP/MD5 and in the IPsec suite. For
 the purposes of this discussion, the particular algorithm used in
 either protocol suite is not the focus, and there is ongoing work to
 allow TCP/MD5 to evolve to a more general TCP security option
 [6][47].

3.1.2. TCP RST Window Attenuation

 A recent proposal extends TCP to further constrain received RST to
 match the expected next sequence number [36]. This restores TCP’s
 resistance to spurious RSTs, effectively limiting the receive window
 for RSTs to a single number. As a result, an attacker would need to
 send 2^32 different packets to brute-force guess the sequence number
 (worst case, the average would be half that); this makes TCP’s
 vulnerability to attack independent of the size of the receive window
 (RCV.WND). The extension further modifies the RST receiver to react
 to incorrectly-numbered RSTs, by sending a zero-length ACK. If the
 RST source is legitimate, upon receipt of an ACK, the closed source
 would presumably emit a RST with the sequence number matching the
 ACK, correctly resetting the intended recipient. This modification
 changes TCP’s control processing, adding to its complexity and thus
 potentially affecting its correctness (in contrast to adding MD5
 signatures, which is orthogonal to TCP control processing
 altogether). For example, there may be complications between RSTs of
 different connections between the same pair of endpoints because RSTs
 flush the TIME-WAIT (as mentioned earlier). Further, this proposal
 modifies TCP so that, under some circumstances, a RST causes a reply
 (an ACK), in violation of generally accepted practice, if not gentle
 recommendation -- although this can be omitted, allowing timeouts to
 suffice. The advantage to this proposal is that it can be deployed
 incrementally and has benefit to the endpoint on which it is

Touch Informational [Page 11]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 deployed. The other advantage to this proposal is that the window
 attenuation described here makes the vulnerability to spoofed RST
 packets independent of the size of the receive window.

 A variant of this proposal uses a different value to attenuate the
 window of viable RSTs. It requires RSTs to carry the initial
 sequence number rather than the next expected sequence number, i.e.,
 the value negotiated on connection establishment [42][49]. This
 proposal has the advantage of using an explicitly negotiated value,
 but at the cost of changing the behavior of an unmodified endpoint to
 a currently valid RST. It would thus be more difficult, without
 additional mechanism, to deploy incrementally.

 Another variant of this proposal involves increasing TCP’s window
 space, rather than decreasing the valid range for RSTs, i.e.,
 increasing the sequence space from 32 bits to 64 bits. This has the
 equivalent effect -- the ratio of the valid sequence numbers for any
 segment to the overall sequence number space is significantly
 reduced. The use of the larger space, as with current schemes to
 establish weak authentication using initial sequence numbers (ISNs),
 is contingent on using suitably random values for the ISN. Such
 randomness adds additional complexity to TCP both in specification
 and implementation, and provides only very weak authentication. Such
 a modification is not obviously backward compatible, and would be
 thus difficult to deploy.

 A converse variant of increasing TCP’s window space is to decrease
 the receive window (RCV.WND) explicitly, which would further reduce
 the effectiveness of spoofed RSTs with random sequence numbers. This
 alternative may reduce the throughput of the connection, if the
 advertised receive window is smaller than the bandwidth-delay product
 of the connection.

3.1.3. TCP Timestamp Authentication

 Another way to authenticate TCP segments is via its timestamp option,
 using the value as a sort of authentication [34]. This requires that
 the receiver TCP discard segments whose timestamp is outside the
 accepted window, which is derived from the timestamps of other
 packets from the same connection. This technique uses an existing
 TCP option, but also requires modified TCP control processing (with
 the same caveats) and may be difficult to deploy incrementally
 without further modifications. Additionally, the timestamp value may
 be easier to guess because it can be derived predictably, either
 assuming it represents actual time at the host, or by probing the
 host using unrelated benign traffic.

Touch Informational [Page 12]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

3.1.4. Other TCP Cookies

 All of the above techniques are variants of cookies, otherwise
 meaningless data whose value is used to validate the packet. In the
 case of MD5 checksums, the cookie is computed based on a shared
 secret. Note that even a signature can be guessed, and presents a 1
 in 2^(signature length) probability of attack. The primary
 difference is that MD5 signatures are effectively one-time cookies,
 not predictable based on on-path snooping, because they are dependent
 on packet data and thus do not repeat. Window attenuation sequence
 numbers can be guessed by snooping the sequence number of current
 packets of an existing connection, and timestamps can be guessed even
 less directly, either by separate benign connections or by assuming
 they roughly correlate to local time. These variants of cookies are
 similar in spirit to TCP SYN cookies, again patching a vulnerability
 to off-path third-party spoofing attacks based on a (fairly weak,
 excepting MD5) form of authentication. Another form of cookie is the
 source port itself, which can be randomized but provides only 16 bits
 of protection (65,000 combinations), which may be exhaustively
 attacked. This can be combined with destination port randomization
 as well, but that would require a separate coordination mechanism (so
 both parties know which ports to use), which is equivalent to (and as
 infeasible for large-scale deployments as) exchanging a shared secret
 [39].

3.1.5. Other TCP Considerations

 The analysis of the potential for RST spoofing above assumes that the
 advertised receive window is opened to the maximum extent suggested
 by the bandwidth-delay product of the end-to-end path, and that the
 window is opened to an appreciable fraction of the overall sequence
 number space. As noted earlier, for most common cases, connections
 are too brief or over bandwidths too low for such a large window to
 be useful. Expanding TCP’s sequence number space is a direct way to
 further avoid such vulnerability, even for long connections over
 emerging bandwidths. If either manual tuning or automatic tuning of
 the advertised receive window (via receive buffer tuning) is not
 provided, this is not an issue (although connection performance will
 suffer) [38].

 It may be sufficient for the endpoint to limit the advertised receive
 window by deliberately leaving it small. If the receive socket
 buffer is limited, e.g., to the ubiquitous default of 64 KB, the
 advertised receive window will not be as vulnerable even for very
 long connections over very high bandwidths. The vulnerability will
 grow linearly with the increased network speed, but not as the
 square. The consequence is lower sustained throughput, where only
 one window’s worth of data per round-trip time (RTT) is exchanged.

Touch Informational [Page 13]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 This will keep the connection open longer; for long-lived connections
 with continuous sourced data, this may continue to present an attack
 opportunity, albeit a sparse and slow-moving target. For the most
 recent case where BGP data is being exchanged between Internet
 routers, the data is bursty and the aggregate traffic may be small
 (i.e., unlikely to cover a substantial portion of the sequence space,
 even if long-lived), so smaller advertised receive windows (via small
 receiver buffers) may, in some cases, sufficiently address the
 immediate problem. This assumes that the routing tables can be
 exchanged quickly enough with bandwidth reduced due to the smaller
 buffers, or perhaps that the advertised receive window is opened only
 during a large burst exchange (e.g., via some other signal between
 the two routers, or a time-based signal, though either would be
 nonstandard).

3.1.6. Other Transport Protocol Solutions

 Segment authentication has been addressed at the transport layer in
 other protocols. Both SCTP and DCCP include cookies for connection
 establishment and use them to authenticate a variety of other control
 messages [28][41]. The inclusion of such mechanism at the transport
 protocol, although emerging as standard practice, complicates the
 design and implementation of new protocols [32]. As new attacks are
 discovered (SYN floods, RSTs, etc.), each protocol must be modified
 individually to compensate. A network solution may be more
 appropriate and efficient.

 It should be noted that RST attacks, which rely on brute-force, are
 relatively easy for intrusion detection software to detect at the TCP
 layer. Any connection that receives a large number of invalid --
 outside-window -- RSTs might have subsequent RSTs blocked, to defeat
 such attacks. This would have the side-effect of blocking legitimate
 RSTs to that connection, which might then interfere with cleaning up
 the transport state between the endpoint peers. This side-effect,
 coupled with the increased monitoring load, might render such
 solutions undesirable in the general case, but they might usefully be
 applied to special cases, e.g., for BGP for routers.

3.2. Network Layer (IP) Solutions

 There are two primary variants of network layer solutions to
 spoofing: address filtering and IPsec. Address filtering is an
 indirect system that relies on other parties to filter packets sent
 upstream of an attack, but does not necessarily require participation
 of the packet source. IPsec requires cooperation between the
 endpoints wanting to avoid attack on their connection, which
 currently involves preexisting shared knowledge of either a shared
 key or shared certificate authority.

Touch Informational [Page 14]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

3.2.1. Address Filtering

 Address filtering is often proposed as an alternative to protocol
 mechanisms to defeat IP source address spoofing [2][13]. Address
 filtering restricts traffic from downstream sources across transit
 networks based on the IP source address. A kind of filtering already
 occurs at the endpoints of a connection, because attack messages must
 match the socket pair to succeed; again, note that such attacks
 require knowing the entire socket pair, and are unlikely except in
 particular cases. This section discusses filtering based on address
 only, typically done at the borders of an AS.

 It can also restrict core-to-edge paths to reject traffic that should
 have originated further toward the edge. It cannot restrict traffic
 from edges lacking filtering through the core to a particular edge.
 As a result, each border router must perform the appropriate
 filtering for overall protection to result; failure of any border
 router to filter defeats the protection of all participants inside
 the border, and potentially those outside as well. Address filtering
 at the border can protect those inside the border from some kinds of
 spoofing, i.e., connections among those inside a border, because only
 interior addresses should originate inside the border. It cannot,
 however, protect connections including endpoints outside the border
 (i.e., those that traverse the AS boundary) except to restrict where
 the traffic enters from, e.g., if it expected from one AS and not
 another.

 As a result, address filtering is not a local solution that can be
 deployed to protect communicating pairs, but rather relies on a
 distributed infrastructure of trusted gateways filtering forged
 traffic where it enters the network. It is not feasible for local,
 incremental deployment, but may be applicable to connections among
 those inside the protected border in some scenarios. Applying
 filtering can also be useful to reduce the network load of spoofed
 traffic [31].

 A more recent variant of address filtering checks the IP TTL (Time to
 Live) field, relying on the TTL set by the other end of the
 connection [15]. This technique has been used to provide filtering
 for BGP. It assumes the connection source TTL is set to 255; packets
 at the receiver are checked for TTL=255, and others are dropped.
 This restricts traffic to one hop upstream of the receiver (i.e., a
 BGP router), but those hops could include other user programs at
 those nodes (e.g., the BGP router’s peer) or any traffic those nodes
 accept via tunnels -- because tunnels need not decrement TTLs,
 notably for "bump in the wire" (BITW) or BITW-equivalent scenarios
 [33] (see also Section 5.1 of [15] and [16]). TTL filtering works
 only where all traffic from the other end of the tunnel is trusted,

Touch Informational [Page 15]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 i.e., where it does not originate or transit spoofed traffic. The
 use of TTL rather than link or network security also assumes an
 untampered point-to-point link, where no other traffic can be spoofed
 onto a link.

 This method of filtering works best where traffic originates one hop
 away, so that the address filtering is based on the trust of only
 directly-connected (tunneled or otherwise) nodes. Like conventional
 address filtering, this reduces spoofing traffic in general, but is
 not considered a reliable security mechanism because it relies on
 distributed filtering (e.g., the fact that upstream nodes do not
 terminate tunnels arbitrarily).

3.2.2. IPsec

 TCP is susceptible to RSTs, but also to other off-path and on-path
 spoofing attacks, including SYN attacks. Other transport protocols,
 such as UDP and RTP are equally susceptible. Although emerging
 transport protocols attempt to defeat such attacks at the transport
 layer, such attacks take advantage of network layer identity
 spoofing. The packet is coming from an endpoint that is spoofing
 another endpoint, either upstream or somewhere else in the Internet.
 IPsec was designed specifically to establish and enforce
 authentication of a packet’s source and contents in order to most
 directly and explicitly address this security vulnerability.

 The larger problem with IPsec is that of key distribution and use.
 IPsec is often cumbersome, and has only recently been supported in
 many end-system operating systems. More importantly, it relies on
 preshared keys, signed X.509 certificates, or a trusted third-party
 (e.g., Kerberos) key infrastructure to establish and exchange keying
 information (e.g., via IKE). Each of these issues presents
 challenges when using IPsec to secure traffic to a well-known server,
 whose clients may not support IPsec or may not have registered with a
 previously-known certificate authority (CA).

 These keying challenges are being addressed in the IETF in ways that
 will enable servers secure associations with other parties without
 advance coordination [45][46]. This can be especially useful for
 publicly-available servers, or for protecting connections to servers
 that -- for whatever reason -- have not or will not deploy
 conventional IPsec certificates (i.e., core Internet BGP routers).

Touch Informational [Page 16]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

4. ICMP

 Just as spoofed TCP packets can terminate a connection, so too can
 spoofed ICMP packets. ICMP can be used to launch a variety of
 attacks on TCP including connection resets, path-MTU attacks, and can
 also be used to attack the host with non-TCP ’ping of death’ and
 ’smurf attacks’, etc. [40]. ICMP thus represents a substantial
 threat to TCP, but this is not the focus of this document, although a
 number of protections are discussed below because some are comparable
 to TCP anti-spoofing techniques. Note also that ICMP attacks on TCP
 assume that the socket pair is known by the attacker, which is
 unlikely except for a subset of services between pairs of widely-
 known endpoints.

 TCP headers can be included inside certain ICMP messages [7]. There
 have been recent suggestions to validate the sequence number of TCP
 headers when they occur inside ICMP messages [18]. This sequence
 checking is similar to checks that would occur for conventional data
 packets in TCP, but is being proposed in the spirit of the RST window
 attenuation described in Section 3.1.2.

 Some such checks may be reasonable, especially where they parallel
 the validations already performed by TCP processing, notably where
 they emulate the semantics of such processing. For example, the TCP
 checksum should be validated (if the entire TCP segment is contained
 in the ICMP message) before any fields of the TCP header are
 examined, to avoid reacting to corrupted packets. Similarly, if the
 TCP MD5 option is present, its signature should probably be validated
 before considering the contents of the message. Such validation can
 ensure that the packet was not corrupted prior to the ICMP generation
 (checksum), that the packet was one sent by the source (IPsec or
 TCP/MD5 authenticated), or that the packet was not in the network for
 an excess of 2*MSL (valid sequence number).

 ICMP presents a particular challenge because some messages can reset
 a connection more easily -- with less validation -- than even some
 spoofed TCP segments. One other proposed alternative is to change
 TCP’s reaction to ICMPs after a connection is established; that may
 leave TCP susceptible during connection establishment and modifies
 TCP’s reaction to certain valid network events [19]. This considers
 the context-sensitivity of ICMP messages, as does IPsec in some
 tunneled configurations, but the recommendations are ambiguous
 regarding such filtering [27].

 Ultimately, requiring TCP ICMP messages to be ’in window’ may be
 insufficient protection, as this document shows for spoofed data.
 ICMP packets can be authenticated when originating at known, trusted
 endpoints, such as endpoints of connections or routers in known

Touch Informational [Page 17]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 domains with preexisting IPsec associations. Unfortunately, they
 also can originate at other places in the network. In addition, some
 networks filter all ICMP packets because validation may not be
 possible, especially because they can be injected from anywhere in a
 network, and so cannot be easily and locally address filtered [27].
 As a result, they are not addressed separately in the issues or
 security considerations of this document further.

5. Issues

 There are a number of existing and proposed solutions addressing the
 vulnerability of transport protocols in general (and TCP in specific)
 to off-path third-party spoofing attacks. As shown, these operate at
 the transport or network layer. Transport solutions require separate
 modification of each transport protocol, addressing network identity
 spoofing separately in the context of each transport association.
 Network solutions require distributed coordination (filtering) or can
 be computationally intensive and require pervasive registration of
 certificate authorities with every possible endpoint
 (authentication). This section explains these observations further.

5.1. Transport Layer (e.g., TCP)

 Transport solutions rely on shared cookies to authenticate segments,
 including data, transport header, and even pseudo-header (e.g., fixed
 portions of the outer IP header in TCP). Because the Internet relies
 on stateless network protocols, it makes sense to rely on state
 establishment and maintenance available in some transport layers not
 only for the connection but for authentication state. Three-way
 handshakes and heartbeats can be used to negotiate authentication
 state in conjunction with connection parameters, which can be stored
 with connection state easily.

 As noted earlier, transport layer solutions require separate
 modification of all transport protocols to include authentication.
 Not all transport protocols support negotiated endpoint state (e.g.,
 UDP), and legacy protocols have been notoriously difficult to safely
 augment. Not all authentication solutions are created equal, either,
 and relying on a variety of transport solutions exposes end-systems
 to increased potential for incorrectly specified or implemented
 solutions. Transport authentication has often been developed piece-
 wise, in response to specific attacks, e.g., SYN cookies and RST
 window attenuation [4][36].

 Transport layer solutions are not only per-protocol, but often per-
 connection. This has both advantages and drawbacks. One advantage
 to transport layer solutions is that they can protect the transport
 protocol when lower layers have failed, e.g., due to bugs in

Touch Informational [Page 18]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 implementation. TCP already includes a variety of packet validation
 mechanisms to protect in these cases, e.g., checking that RSTs are
 in-window. More strict checks can increase the protections provided,
 e.g., to protect against misaddressed RSTs that end up in-window (via
 TCPsecure) or to protect against connection interruption due to RSTs,
 SYNs, or data injection from misaddressed packets (TCP/MD5) [36].

 Another advantage is that transport layer protections can be more
 specifically limited to a particular connection. Because each
 connection negotiates its state separately, that state can be more
 specifically tied to that connection. This is both an advantage and
 a drawback. It can make it easier to tie security to an individual
 connection, although in practice a shared secret or certificate will
 generally be shared across multiple connections.

 As a drawback, each transport connection needs to negotiate and
 maintain authentication state separately. Some overhead is not
 amortized over multiple connections, e.g., overheads in packet
 exchanges, whereas other overheads are not amortized over different
 transport protocols, e.g., design and implementation complexity --
 both as would be the case in a network layer solution. Because the
 authentication happens later in packet processing than is required,
 additional endpoint resources may be needlessly consumed, e.g., in
 demultiplexing received packets, indexing connection identifiers, and
 continuing to buffer spoofed packets, etc., only to be dropped later
 at the transport layer.

5.2. Network Layer (IP)

 A network layer solution avoids the hazards of multiple transport
 variants, using a single shared endpoint authentication mechanism
 early in receiver packet processing to discard unauthenticated
 packets at the network layer instead. This defeats spoofing entirely
 because spoofing involves masquerading as another endpoint, and
 network layer security validates the endpoint as the source of the
 packets it emits. Such a network level solution protects all
 transport protocols as a result, including both legacy and emerging
 protocols, and reduces the complexity of these protocols as well. A
 shared solution also reduces protocol overhead, and decouples the
 management (and refreshing) of authentication state from that of
 individual transport connections. Finally, a network layer solution
 protects not only the transport layer but the network layer as well,
 e.g., from IGMP, and some kinds of ICMP (Section 4), spoofing
 attacks.

 The IETF Proposed Standard protocol for network layer authentication
 is IPsec [27]. IPsec specifies the overall architecture, including
 header authentication (AH) [25] and encapsulation (ESP) modes [26].

Touch Informational [Page 19]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 AH authenticates both the IP header and IP data, whereas ESP
 authenticates only the IP data (e.g., transport header and payload).
 AH is being phased out since ESP is more efficient and the Security
 Parameters Index (SPI) includes sufficient information to verify the
 IP header anyway [27]. These two modes describe the security applied
 to individual packets within the IPsec system; key exchange and
 management is performed either out-of-band (via pre-shared keys) or
 by an automated key exchange protocol, e.g., IKE [24].

 IPsec already provides authentication of an IP header and its data
 contents sufficient to defeat both on-path and off-path third-party
 spoofing attacks. IKE can configure authentication between two
 endpoints on a per-endpoint, per-protocol, or per-connection basis,
 as desired. IKE also can perform automatic periodic re-keying,
 further defeating crypto-analysis based on snooping (clandestine data
 collection). The use of IPsec is already commonly strongly
 recommended for protected infrastructure.

 Existing IPsec is not appropriate for many deployments. It is
 computationally intensive both in key management and individual
 packet authentication [43]. This computational overhead can be
 prohibitive, and so often requires additional hardware, especially in
 commercial routers. As importantly, IKE is not anonymous; keys can
 be exchanged between parties only if they trust each other’s X.509
 certificates, trust some other third-party to help with key
 generation (e.g., Kerberos), or pre-share a key. These certificates
 provide identification (the other party knows who you are) only where
 the certificates themselves are signed by certificate authorities
 (CAs) that both parties already trust. To a large extent, the CAs
 themselves are the pre-shared keys that help IKE establish security
 association keys, which are then used in the authentication
 algorithms.

 Alternative mechanisms are under development to address this
 limitation, to allow publicly-accessible servers to secure
 connections to clients not known in advance, or to allow unilateral
 relaxation of identity validation so that the remaining protections
 of IPsec can be made available [45][46]. In particular, these
 mechanisms can prevent a client (but without knowing who that client
 is) from being affected by spoofing from other clients, even when the
 attackers are on the same communications path.

 IPsec, although widely available both in commercial routers and
 commodity end-systems, is not often used except between parties that
 already have a preexisting relationship (employee/employer, between
 two ISPs, etc.). Servers to anonymous clients (e.g., customer/
 business) or more open services (e.g., BGP, where routers may have
 large numbers of peers) are unmanageable, due to the breadth and flux

Touch Informational [Page 20]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 of CAs. New endpoints cannot establish IPsec associations with such
 servers unless their own certificate is signed by a CA already
 trusted by the server. Different servers -- even within the same
 overall system (e.g., BGP) -- often cannot or will not trust
 overlapping subsets of CAs in general.

5.3. Application Layer

 There are a number of application layer authentication mechanisms,
 often implicit within end-to-end encryption. Application layer
 security (e.g., TLS, SSH, or MD5 checksums within a BGP stream)
 provides the ultimate protection of application data from all
 intermediaries, including network routers as well as exposure at
 other layers in the end-systems. This is the only way to ultimately
 protect the application data.

 Application authentication cannot protect either the network or
 transport protocols from spoofing attacks, however. Spoofed packets
 interfere with network processing or reset transport connections
 before the application checks the data. Authentication needs to
 winnow these packets and drop them before they interfere at these
 lower layers.

 An alternate application layer solution would involve resilience to
 reset connections. If the application can recover from such
 connection interruptions, then such attacks have less impact.
 Unfortunately, attackers still affect the application, e.g., in the
 cost of restarting connections, delays until connections are
 restarted, or increased connection establishment messages on the
 network. Some applications -- notably BGP -- even interpret TCP
 connection reliability as an indicator of route path stability, which
 is why attacks on BGP have such substantial consequences.

5.4. Link Layer

 Link layer security operates separately on each hop of an Internet.
 Such security can be critical in protecting link resources, such as
 bandwidth and link management protocols. Protection at this layer
 cannot suffice for network or transport layers, because it cannot
 authenticate the endpoint source of a packet. Link authentication
 ensures only the source of the current link hop where it is examined.

5.5. Issues Discussion

 The issues raised in this section suggest that there are challenges
 with all solutions to transport protection from spoofing attacks.
 This raises the potential need for alternate security levels. While
 it is already widely recognized that security needs to occur

Touch Informational [Page 21]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 simultaneously at many protocol layers, there also may be utility in
 supporting a variety of strengths at a single layer. For example,
 IPsec already supports a variety of algorithms (MD5, SHA1, etc., for
 authentication), but always assumes that:

 1. The entire body of the packet is secured.

 2. Security associations are established only where identity is
 authenticated by a known certificate authority or other pre-shared
 key.

 3. Both on-path and off-path third-party spoofing attacks must be
 defeated.

 These assumptions are prohibitive, especially in many cases of
 spoofing attacks. For spoofing, the primary issue is whether packets
 are coming from the same party the server can reach. Only the IP
 header is fundamentally in question, so securing the entire packet
 (1) is computational overkill. It is sufficient to authenticate the
 other party as "a party you have exchanged packets with", rather than
 establishing their trusted identity ("Bill" vs. "Bob") as in (2).
 Finally, many cookie systems use clear-text (unencrypted), fixed
 cookie values, providing reasonable (1 in 2^{cookie-size}) protection
 against off-path third-party spoof attacks, but not addressing on-
 path attacks at all. Such potential solutions are discussed in the
 Better Than Nothing Security (BTNS) documents [5][45][46]. Note also
 that NULL Encryption in IPsec applies a variant of this cookie, where
 the SPI is the cookie, and no further encryption is applied [17].

6. Security Considerations

 This entire document focuses on increasing the security of transport
 protocols and their resistance to spoofing attacks. Security is
 addressed throughout.

 This document describes a number of techniques for defeating spoofing
 attacks. Those relying on clear-text cookies, either explicit or
 implicit (e.g., window sequence attenuation) do not protect from on-
 path spoofing attacks, since valid values can be learned from prior
 traffic. Those relying on true authentication algorithms are
 stronger, protecting even from on-path attacks, because the
 authentication hash in a single packet approaches the behavior of
 "one-time" cookies.

 The security of various levels of the protocol stack is addressed.
 Spoofing attacks are fundamentally identity masquerading, so we
 believe the most appropriate solutions defeat these at the network
 layer, where end-to-end identity lies. Some transport protocols

Touch Informational [Page 22]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 subsume endpoint identity information from the network layer (e.g.,
 TCP pseudo-headers), whereas others establish per-connection identity
 based on exchanged nonces (e.g., SCTP). It is reasonable, if not
 recommended, to address security at all layers of the protocol stack.

 Note that Network Address Translators (NATs) and other middleboxes
 complicate the design and deployment of techniques to defeat spoofing
 attacks. Devices such as these, that modify IP and/or TCP headers
 in-transit, generate traffic equivalent to a spoofing attack, and
 thus should be inhibited by antispoofing mechanisms. Details of
 these middlebox-related problems are out of scope for this document,
 but issues thereof are addressed in RFCs and emerging documents that
 discuss the interactions between such devices and the Internet
 architecture, e.g., [21]. Fortunately, many of the most critical
 TCP-based connections -- in particular, those supporting routing
 protocols like BGP -- do not traverse such middleboxes, and are not
 affected by this limitation.

7. Conclusions

 This document describes the details of the recent BGP spoofing
 attacks involving spurious RSTs, which could be used to shutdown TCP
 connections. It summarizes and discusses a variety of current and
 proposed solutions at various protocol layers.

8. Acknowledgments

 This document was inspired by discussions in the TCPM WG
 <http://www.ietf.org/html.charters/tcpm-charter.html> about the
 recent spoofed RST attacks on BGP routers, including R. Stewart’s
 document (whose author list has since evolved) [36][42]. The
 analysis of the attack issues, alternate solutions, and the anonymous
 security proposed solutions were the result of discussions on that
 list as well as with USC/ISI’s T. Faber, A. Falk, G. Finn, and Y.
 Wang. R. Atkinson suggested the UDP variant of TCP/MD5, P. Goyette
 suggested using the ISN to seed TCP/MD5, and L. Wood suggested using
 the ISN to validate RSTs. Other improvements are due to the input of
 various members of the IETF’s TCPM WG, notably detailed feedback from
 F. Gont, P. Savola, and A. Hoenes.

 This document was prepared using 2-Word-v2.0.template.dot.

Touch Informational [Page 23]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

9. Informative References

 [1] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [2] Baker, F. and P. Savola, "Ingress Filtering for Multihomed
 Networks", BCP 84, RFC 3704, March 2004.

 [3] Bellovin, S. and A. Zinin, "Standards Maturity Variance
 Regarding the TCP MD5 Signature Option (RFC 2385) and the BGP-4
 Specification", RFC 4278, January 2006.

 [4] Bernstein, D., "SYN cookies", 1997,
 <http://cr.yp.to/syncookies.html>.

 [5] Better Than Nothing Security [BTNS] WG web pages,
 <http://www.postel.org/anonsec>.

 [6] Bonica, R., Weis, B., Viswanathan, S., Lange, A., and O.
 Wheeler, "Authentication for TCP-based Routing and Management
 Protocols", Work in Progress, February 2007.

 [7] Braden, R., "Requirements for Internet Hosts - Communication
 Layers", STD 3, RFC 1122, October 1989.

 [8] Braden, R., "TIME-WAIT Assassination Hazards in TCP", RFC 1337,
 May 1992.

 [9] CERT alert: "Technical Cyber Security Alert TA04-111A:
 Vulnerabilities in TCP", April 20, 2004,
 <http://www.us-cert.gov/cas/techalerts/TA04-111A.html>.

 [10] Convery, S., and M. Franz, "BGP Vulnerability Testing:
 Separating Fact from FUD", 2003,
 <http://www.nanog.org/mtg-0306/pdf/franz.pdf>.

 [11] Eddy, W., "TCP SYN Flooding Attacks and Common Mitigations",
 Work in Progress, May 2007.

 [12] Faber, T., J. Touch, and W. Yue, "The TIME-WAIT state in TCP
 and Its Effect on Busy Servers", Proc. Infocom 1999, pp. 1573-
 1583, Mar. 1999.

 [13] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, May 2000.

Touch Informational [Page 24]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 [14] Floyd, S., "Inappropriate TCP Resets Considered Harmful", BCP
 60, RFC 3360, August 2002.

 [15] Gill, V., Heasley, J., and D. Meyer, "The Generalized TTL
 Security Mechanism (GTSM)", RFC 3682, February 2004.

 [16] Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C.
 Pignataro, "The Generalized TTL Security Mechanism (GTSM)",
 Work in Progress, June 2007.

 [17] Glenn, R. and S. Kent, "The NULL Encryption Algorithm and Its
 Use With IPsec", RFC 2410, November 1998.

 [18] Gont, F., "ICMP attacks against TCP", Work in Progress, May
 2007.

 [19] Gont, F., "TCP’s Reaction to Soft Errors", Work in Progress,
 June 2007.

 [20] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, August 1998.

 [21] Holdrege, M. and P. Srisuresh, "Protocol Complications with the
 IP Network Address Translator", RFC 3027, January 2001.

 [22] Housley, R., Post to IETF Discussion mailing list regarding his
 IETF 64 Security Area presentation,
 ID=7.0.0.10.2.20051124135914.00f50558@vigilsec.com, Nov. 24,
 2005, <http://www1.ietf.org/
 mail-archive/ietf/Current/maillist.html>.

 [23] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions for
 High Performance", RFC 1323, May 1992.

 [24] Kaufman, C., Ed., "Internet Key Exchange (IKEv2) Protocol", RFC
 4306, December 2005.

 [25] Kent, S., "IP Authentication Header", RFC 4302, December 2005.

 [26] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303,
 December 2005.

 [27] Kent, S. and K. Seo, "Security Architecture for the Internet
 Protocol", RFC 4301, December 2005.

 [28] Kohler, E., Handley, M., and S. Floyd, "Datagram Congestion
 Control Protocol (DCCP)", RFC 4340, March 2006.

Touch Informational [Page 25]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 [29] Larsen, M., and F. Gont, "Port Randomization", Work in
 Progress, February 2007.

 [30] Leech, M., "Key Management Considerations for the TCP MD5
 Signature Option", RFC 3562, July 2003.

 [31] Moore, D., G. Voelker, and S. Savage, "Inferring Internet
 Denial-of-Service Activity", Proc. Usenix Security Symposium,
 Aug. 2001.

 [32] O’Malley, S. and L. Peterson, "TCP Extensions Considered
 Harmful", RFC 1263, October 1991.

 [33] Perkins, C., "IP Encapsulation within IP", RFC 2003, October
 1996.

 [34] Poon, K., "Use of TCP timestamp option to defend against blind
 spoofing attack", Work in Progress, October 2004.

 [35] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

 [36] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP’s
 Robustness to Blind In-Window Attacks", Work in Progress, July
 2007.

 [37] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border
 Gateway Protocol 4 (BGP-4)", RFC 4271, January 2006.

 [38] Semke, J., J. Mahdavi, and M. Mathis, "Automatic TCP Buffer
 Tuning", ACM SIGCOMM ’98/ Computer Communication Review, volume
 28, number 4, Oct. 1998.

 [39] Shepard, T., "Reassign Port Number option for TCP", Work in
 Progress, July 2004.

 [40] Shirey, R., "Internet Security Glossary, Version 2", Work in
 Progress, November 2006.

 [41] Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer,
 H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., and V.
 Paxson, "Stream Control Transmission Protocol", RFC 2960,
 October 2000.

 [42] TCPM: IETF TCPM Working Group and mailing list,
 <http://www.ietf.org/html.charters/tcpm-charter.html>.

 [43] Touch, J., "Report on MD5 Performance", RFC 1810, June 1995.

Touch Informational [Page 26]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

 [44] Touch, J., "Performance Analysis of MD5", Proc. Sigcomm 1995,
 pp. 77-86, Mar. 1999.

 [45] Touch, J., "ANONsec: Anonymous Security to Defend Against
 Spoofing Attacks", Work in Progress, May 2004.

 [46] Touch, J., Black, D., and Y. Wang, "Problem and Applicability
 Statement for Better Than Nothing Security (BTNS)", Work in
 Progress, February 2007.

 [47] Touch, J. and A. Mankin, "The TCP Simple Authentication
 Option", Work in Progress, July 2007.

 [48] Watson, P., "Slipping in the Window: TCP Reset attacks",
 Presentation at 2004 CanSecWest,
 <http://cansecwest.com/csw04archive.html>.

 [49] Wood, L., Post to TCPM mailing list regarding use of ISN in
 RSTs, ID=Pine.GSO.4.50.0404232249570.5889-
 100000@argos.ee.surrey.ac.uk, Apr. 23, 2004,
 <http://www1.ietf.org/mail-archive/web/tcpm/current/
 msg00213.html>.

Author’s Addresses

 Joe Touch
 USC/ISI
 4676 Admiralty Way
 Marina del Rey, CA 90292-6695
 U.S.A.

 Phone: +1 (310) 448-9151
 Fax: +1 (310) 448-9300
 EMail: touch@isi.edu
 URI: http://www.isi.edu/touch

Touch Informational [Page 27]

RFC 4953 Defending TCP Against Spoofing Attacks July 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Touch Informational [Page 28]

