
Network Working Group J. Hutzelman
Request for Comments: 4462 CMU
Category: Standards Track J. Salowey
 Cisco Systems
 J. Galbraith
 Van Dyke Technologies, Inc.
 V. Welch
 U Chicago / ANL
 May 2006

 Generic Security Service Application Program Interface (GSS-API)
 Authentication and Key Exchange for the Secure Shell (SSH) Protocol

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 The Secure Shell protocol (SSH) is a protocol for secure remote login
 and other secure network services over an insecure network.

 The Generic Security Service Application Program Interface (GSS-API)
 provides security services to callers in a mechanism-independent
 fashion.

 This memo describes methods for using the GSS-API for authentication
 and key exchange in SSH. It defines an SSH user authentication
 method that uses a specified GSS-API mechanism to authenticate a
 user, and a family of SSH key exchange methods that use GSS-API to
 authenticate a Diffie-Hellman key exchange.

 This memo also defines a new host public key algorithm that can be
 used when no operations are needed using a host’s public key, and a
 new user authentication method that allows an authorization name to
 be used in conjunction with any authentication that has already
 occurred as a side-effect of GSS-API-based key exchange.

Hutzelman, et al. Standards Track [Page 1]

RFC 4462 SSH GSS-API Methods May 2006

Table of Contents

 1. Introduction ..3
 1.1. SSH Terminology ..3
 1.2. Key Words ..3
 2. GSS-API-Authenticated Diffie-Hellman Key Exchange3
 2.1. Generic GSS-API Key Exchange4
 2.2. Group Exchange ..10
 2.3. gss-group1-sha1-* ...11
 2.4. gss-group14-sha1-* ..12
 2.5. gss-gex-sha1-* ..12
 2.6. Other GSS-API Key Exchange Methods12
 3. GSS-API User Authentication13
 3.1. GSS-API Authentication Overview13
 3.2. Initiating GSS-API Authentication13
 3.3. Initial Server Response14
 3.4. GSS-API Session ...15
 3.5. Binding Encryption Keys16
 3.6. Client Acknowledgement16
 3.7. Completion ..17
 3.8. Error Status ..17
 3.9. Error Token ...18
 4. Authentication Using GSS-API Key Exchange19
 5. Null Host Key Algorithm ..20
 6. Summary of Message Numbers21
 7. GSS-API Considerations ...22
 7.1. Naming Conventions ..22
 7.2. Channel Bindings ..22
 7.3. SPNEGO ..23
 8. IANA Considerations ..24
 9. Security Considerations ..24
 10. Acknowledgements ..25
 11. References ..26
 11.1. Normative References26
 11.2. Informative References27

Hutzelman, et al. Standards Track [Page 2]

RFC 4462 SSH GSS-API Methods May 2006

1. Introduction

 This document describes the methods used to perform key exchange and
 user authentication in the Secure Shell protocol using the GSS-API.
 To do this, it defines a family of key exchange methods, two user
 authentication methods, and a new host key algorithm. These
 definitions allow any GSS-API mechanism to be used with the Secure
 Shell protocol.

 This document should be read only after reading the documents
 describing the SSH protocol architecture [SSH-ARCH], transport layer
 protocol [SSH-TRANSPORT], and user authentication protocol
 [SSH-USERAUTH]. This document freely uses terminology and notation
 from the architecture document without reference or further
 explanation.

1.1. SSH Terminology

 The data types used in the packets are defined in the SSH
 architecture document [SSH-ARCH]. It is particularly important to
 note the definition of string allows binary content.

 The SSH_MSG_USERAUTH_REQUEST packet refers to a service; this service
 name is an SSH service name and has no relationship to GSS-API
 service names. Currently, the only defined service name is
 "ssh-connection", which refers to the SSH connection protocol
 [SSH-CONNECT].

1.2. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [KEYWORDS].

2. GSS-API-Authenticated Diffie-Hellman Key Exchange

 This section defines a class of key exchange methods that combine the
 Diffie-Hellman key exchange from Section 8 of [SSH-TRANSPORT] with
 mutual authentication using GSS-API.

 Since the GSS-API key exchange methods described in this section do
 not require the use of public key signature or encryption algorithms,
 they MAY be used with any host key algorithm, including the "null"
 algorithm described in Section 5.

Hutzelman, et al. Standards Track [Page 3]

RFC 4462 SSH GSS-API Methods May 2006

2.1. Generic GSS-API Key Exchange

 The following symbols are used in this description:

 o C is the client, and S is the server

 o p is a large safe prime, g is a generator for a subgroup of GF(p),
 and q is the order of the subgroup

 o V_S is S’s version string, and V_C is C’s version string

 o I_C is C’s KEXINIT message, and I_S is S’s KEXINIT message

 1. C generates a random number x (1 < x < q) and computes e = g^x
 mod p.

 2. C calls GSS_Init_sec_context(), using the most recent reply token
 received from S during this exchange, if any. For this call, the
 client MUST set mutual_req_flag to "true" to request that mutual
 authentication be performed. It also MUST set integ_req_flag to
 "true" to request that per-message integrity protection be
 supported for this context. In addition, deleg_req_flag MAY be
 set to "true" to request access delegation, if requested by the
 user. Since the key exchange process authenticates only the
 host, the setting of anon_req_flag is immaterial to this process.
 If the client does not support the "gssapi-keyex" user
 authentication method described in Section 4, or does not intend
 to use that method in conjunction with the GSS-API context
 established during key exchange, then anon_req_flag SHOULD be set
 to "true". Otherwise, this flag MAY be set to true if the client
 wishes to hide its identity. Since the key exchange process will
 involve the exchange of only a single token once the context has
 been established, it is not necessary that the GSS-API context
 support detection of replayed or out-of-sequence tokens. Thus,
 replay_det_req_flag and sequence_req_flag need not be set for
 this process. These flags SHOULD be set to "false".

 * If the resulting major_status code is GSS_S_COMPLETE and the
 mutual_state flag is not true, then mutual authentication has
 not been established, and the key exchange MUST fail.

 * If the resulting major_status code is GSS_S_COMPLETE and the
 integ_avail flag is not true, then per-message integrity
 protection is not available, and the key exchange MUST fail.

 * If the resulting major_status code is GSS_S_COMPLETE and both
 the mutual_state and integ_avail flags are true, the resulting
 output token is sent to S.

Hutzelman, et al. Standards Track [Page 4]

RFC 4462 SSH GSS-API Methods May 2006

 * If the resulting major_status code is GSS_S_CONTINUE_NEEDED,
 the output_token is sent to S, which will reply with a new
 token to be provided to GSS_Init_sec_context().

 * The client MUST also include "e" with the first message it
 sends to the server during this process; if the server
 receives more than one "e" or none at all, the key exchange
 fails.

 * It is an error if the call does not produce a token of non-
 zero length to be sent to the server. In this case, the key
 exchange MUST fail.

 3. S calls GSS_Accept_sec_context(), using the token received from
 C.

 * If the resulting major_status code is GSS_S_COMPLETE and the
 mutual_state flag is not true, then mutual authentication has
 not been established, and the key exchange MUST fail.

 * If the resulting major_status code is GSS_S_COMPLETE and the
 integ_avail flag is not true, then per-message integrity
 protection is not available, and the key exchange MUST fail.

 * If the resulting major_status code is GSS_S_COMPLETE and both
 the mutual_state and integ_avail flags are true, then the
 security context has been established, and processing
 continues with step 4.

 * If the resulting major_status code is GSS_S_CONTINUE_NEEDED,
 then the output token is sent to C, and processing continues
 with step 2.

 * If the resulting major_status code is GSS_S_COMPLETE, but a
 non-zero-length reply token is returned, then that token is
 sent to the client.

 4. S generates a random number y (0 < y < q) and computes f = g^y
 mod p. It computes K = e ^ y mod p, and H = hash(V_C || V_S ||
 I_C || I_S || K_S || e || f || K). It then calls GSS_GetMIC() to
 obtain a GSS-API message integrity code for H. S then sends f
 and the message integrity code (MIC) to C.

 5. This step is performed only (1) if the server’s final call to
 GSS_Accept_sec_context() produced a non-zero-length final reply
 token to be sent to the client and (2) if no previous call by the
 client to GSS_Init_sec_context() has resulted in a major_status
 of GSS_S_COMPLETE. Under these conditions, the client makes an

Hutzelman, et al. Standards Track [Page 5]

RFC 4462 SSH GSS-API Methods May 2006

 additional call to GSS_Init_sec_context() to process the final
 reply token. This call is made exactly as described above.
 However, if the resulting major_status is anything other than
 GSS_S_COMPLETE, or a non-zero-length token is returned, it is an
 error and the key exchange MUST fail.

 6. C computes K = f^x mod p, and H = hash(V_C || V_S || I_C || I_S
 || K_S || e || f || K). It then calls GSS_VerifyMIC() to verify
 that the MIC sent by S matches H. If the MIC is not successfully
 verified, the key exchange MUST fail.

 Either side MUST NOT send or accept e or f values that are not in the
 range [1, p-1]. If this condition is violated, the key exchange
 fails.

 If any call to GSS_Init_sec_context() or GSS_Accept_sec_context()
 returns a major_status other than GSS_S_COMPLETE or
 GSS_S_CONTINUE_NEEDED, or any other GSS-API call returns a
 major_status other than GSS_S_COMPLETE, the key exchange fails. In
 this case, several mechanisms are available for communicating error
 information to the peer before terminating the connection as required
 by [SSH-TRANSPORT]:

 o If the key exchange fails due to any GSS-API error on the server
 (including errors returned by GSS_Accept_sec_context()), the
 server MAY send a message informing the client of the details of
 the error. In this case, if an error token is also sent (see
 below), then this message MUST be sent before the error token.

 o If the key exchange fails due to a GSS-API error returned from the
 server’s call to GSS_Accept_sec_context(), and an "error token" is
 also returned, then the server SHOULD send the error token to the
 client to allow completion of the GSS security exchange.

 o If the key exchange fails due to a GSS-API error returned from the
 client’s call to GSS_Init_sec_context(), and an "error token" is
 also returned, then the client SHOULD send the error token to the
 server to allow completion of the GSS security exchange.

 As noted in Section 9, it may be desirable under site security policy
 to obscure information about the precise nature of the error; thus,
 it is RECOMMENDED that implementations provide a method to suppress
 these messages as a matter of policy.

 This is implemented with the following messages. The hash algorithm
 for computing the exchange hash is defined by the method name, and is
 called HASH. The group used for Diffie-Hellman key exchange and the
 underlying GSS-API mechanism are also defined by the method name.

Hutzelman, et al. Standards Track [Page 6]

RFC 4462 SSH GSS-API Methods May 2006

 After the client’s first call to GSS_Init_sec_context(), it sends the
 following:

 byte SSH_MSG_KEXGSS_INIT
 string output_token (from GSS_Init_sec_context())
 mpint e

 Upon receiving the SSH_MSG_KEXGSS_INIT message, the server MAY send
 the following message, prior to any other messages, to inform the
 client of its host key.

 byte SSH_MSG_KEXGSS_HOSTKEY
 string server public host key and certificates (K_S)

 Since this key exchange method does not require the host key to be
 used for any encryption operations, this message is OPTIONAL. If the
 "null" host key algorithm described in Section 5 is used, this
 message MUST NOT be sent. If this message is sent, the server public
 host key(s) and/or certificate(s) in this message are encoded as a
 single string, in the format specified by the public key type in use
 (see [SSH-TRANSPORT], Section 6.6).

 In traditional SSH deployments, host keys are normally expected to
 change infrequently, and there is often no mechanism for validating
 host keys not already known to the client. As a result, the use of a
 new host key by an already-known host is usually considered an
 indication of a possible man-in-the-middle attack, and clients often
 present strong warnings and/or abort the connection in such cases.

 By contrast, when GSS-API-based key exchange is used, host keys sent
 via the SSH_MSG_KEXGSS_HOSTKEY message are authenticated as part of
 the GSS-API key exchange, even when previously unknown to the client.
 Further, in environments in which GSS-API-based key exchange is used
 heavily, it is possible and even likely that host keys will change
 much more frequently and/or without advance warning.

 Therefore, when a new key for an already-known host is received via
 the SSH_MSG_KEXGSS_HOSTKEY message, clients SHOULD NOT issue strong
 warnings or abort the connection, provided the GSS-API-based key
 exchange succeeds.

 In order to facilitate key re-exchange after the user’s GSS-API
 credentials have expired, client implementations SHOULD store host
 keys received via SSH_MSG_KEXGSS_HOSTKEY for the duration of the
 session, even when such keys are not stored for long-term use.

Hutzelman, et al. Standards Track [Page 7]

RFC 4462 SSH GSS-API Methods May 2006

 Each time the server’s call to GSS_Accept_sec_context() returns a
 major_status code of GSS_S_CONTINUE_NEEDED, it sends the following
 reply to the client:

 byte SSH_MSG_KEXGSS_CONTINUE
 string output_token (from GSS_Accept_sec_context())

 If the client receives this message after a call to
 GSS_Init_sec_context() has returned a major_status code of
 GSS_S_COMPLETE, a protocol error has occurred and the key exchange
 MUST fail.

 Each time the client receives the message described above, it makes
 another call to GSS_Init_sec_context(). It then sends the following:

 byte SSH_MSG_KEXGSS_CONTINUE
 string output_token (from GSS_Init_sec_context())

 The server and client continue to trade these two messages as long as
 the server’s calls to GSS_Accept_sec_context() result in major_status
 codes of GSS_S_CONTINUE_NEEDED. When a call results in a
 major_status code of GSS_S_COMPLETE, it sends one of two final
 messages.

 If the server’s final call to GSS_Accept_sec_context() (resulting in
 a major_status code of GSS_S_COMPLETE) returns a non-zero-length
 token to be sent to the client, it sends the following:

 byte SSH_MSG_KEXGSS_COMPLETE
 mpint f
 string per_msg_token (MIC of H)
 boolean TRUE
 string output_token (from GSS_Accept_sec_context())

 If the client receives this message after a call to
 GSS_Init_sec_context() has returned a major_status code of
 GSS_S_COMPLETE, a protocol error has occurred and the key exchange
 MUST fail.

 If the server’s final call to GSS_Accept_sec_context() (resulting in
 a major_status code of GSS_S_COMPLETE) returns a zero-length token or
 no token at all, it sends the following:

 byte SSH_MSG_KEXGSS_COMPLETE
 mpint f
 string per_msg_token (MIC of H)
 boolean FALSE

Hutzelman, et al. Standards Track [Page 8]

RFC 4462 SSH GSS-API Methods May 2006

 If the client receives this message when no call to
 GSS_Init_sec_context() has yet resulted in a major_status code of
 GSS_S_COMPLETE, a protocol error has occurred and the key exchange
 MUST fail.

 If either the client’s call to GSS_Init_sec_context() or the server’s
 call to GSS_Accept_sec_context() returns an error status and produces
 an output token (called an "error token"), then the following SHOULD
 be sent to convey the error information to the peer:

 byte SSH_MSG_KEXGSS_CONTINUE
 string error_token

 If a server sends both this message and an SSH_MSG_KEXGSS_ERROR
 message, the SSH_MSG_KEXGSS_ERROR message MUST be sent first, to
 allow clients to record and/or display the error information before
 processing the error token. This is important because a client
 processing an error token will likely disconnect without reading any
 further messages.

 In the event of a GSS-API error on the server, the server MAY send
 the following message before terminating the connection:

 byte SSH_MSG_KEXGSS_ERROR
 uint32 major_status
 uint32 minor_status
 string message
 string language tag

 The message text MUST be encoded in the UTF-8 encoding described in
 [UTF8]. Language tags are those described in [LANGTAG]. Note that
 the message text may contain multiple lines separated by carriage
 return-line feed (CRLF) sequences. Application developers should
 take this into account when displaying these messages.

 The hash H is computed as the HASH hash of the concatenation of the
 following:

 string V_C, the client’s version string (CR, NL excluded)
 string V_S, the server’s version string (CR, NL excluded)
 string I_C, the payload of the client’s SSH_MSG_KEXINIT
 string I_S, the payload of the server’s SSH_MSG_KEXINIT
 string K_S, the host key
 mpint e, exchange value sent by the client
 mpint f, exchange value sent by the server
 mpint K, the shared secret

Hutzelman, et al. Standards Track [Page 9]

RFC 4462 SSH GSS-API Methods May 2006

 This value is called the exchange hash, and it is used to
 authenticate the key exchange. The exchange hash SHOULD be kept
 secret. If no SSH_MSG_KEXGSS_HOSTKEY message has been sent by the
 server or received by the client, then the empty string is used in
 place of K_S when computing the exchange hash.

 The GSS_GetMIC call MUST be applied over H, not the original data.

2.2. Group Exchange

 This section describes a modification to the generic GSS-API-
 authenticated Diffie-Hellman key exchange to allow the negotiation of
 the group to be used, using a method based on that described in
 [GROUP-EXCHANGE].

 The server keeps a list of safe primes and corresponding generators
 that it can select from. These are chosen as described in Section 3
 of [GROUP-EXCHANGE]. The client requests a modulus from the server,
 indicating the minimum, maximum, and preferred sizes; the server
 responds with a suitable modulus and generator. The exchange then
 proceeds as described in Section 2.1 above.

 This description uses the following symbols, in addition to those
 defined above:

 o n is the size of the modulus p in bits that the client would like
 to receive from the server

 o min and max are the minimal and maximal sizes of p in bits that
 are acceptable to the client

 1. C sends "min || n || max" to S, indicating the minimal acceptable
 group size, the preferred size of the group, and the maximal
 group size in bits the client will accept.

 2. S finds a group that best matches the client’s request, and sends
 "p || g" to C.

 3. The exchange proceeds as described in Section 2.1 above,
 beginning with step 1, except that the exchange hash is computed
 as described below.

 Servers and clients SHOULD support groups with a modulus length of k
 bits, where 1024 <= k <= 8192. The recommended values for min and
 max are 1024 and 8192, respectively.

 This is implemented using the following messages, in addition to
 those described above:

Hutzelman, et al. Standards Track [Page 10]

RFC 4462 SSH GSS-API Methods May 2006

 First, the client sends:

 byte SSH_MSG_KEXGSS_GROUPREQ
 uint32 min, minimal size in bits of an acceptable group
 uint32 n, preferred size in bits of the group the server
 should send
 uint32 max, maximal size in bits of an acceptable group

 The server responds with:

 byte SSH_MSG_KEXGSS_GROUP
 mpint p, safe prime
 mpint g, generator for subgroup in GF(p)

 This is followed by the message exchange described above in
 Section 2.1, except that the exchange hash H is computed as the HASH
 hash of the concatenation of the following:

 string V_C, the client’s version string (CR, NL excluded)
 string V_S, the server’s version string (CR, NL excluded)
 string I_C, the payload of the client’s SSH_MSG_KEXINIT
 string I_S, the payload of the server’s SSH_MSG_KEXINIT
 string K_S, the host key
 uint32 min, minimal size in bits of an acceptable group
 uint32 n, preferred size in bits of the group the server
 should send
 uint32 max, maximal size in bits of an acceptable group
 mpint p, safe prime
 mpint g, generator for subgroup in GF(p)
 mpint e, exchange value sent by the client
 mpint f, exchange value sent by the server
 mpint K, the shared secret

2.3. gss-group1-sha1-*

 Each of these methods specifies GSS-API-authenticated Diffie-Hellman
 key exchange as described in Section 2.1 with SHA-1 as HASH, and the
 group defined in Section 8.1 of [SSH-TRANSPORT]. The method name for
 each method is the concatenation of the string "gss-group1-sha1-"
 with the Base64 encoding of the MD5 hash [MD5] of the ASN.1
 Distinguished Encoding Rules (DER) encoding [ASN1] of the underlying
 GSS-API mechanism’s Object Identifier (OID). Base64 encoding is
 described in Section 6.8 of [MIME].

 Each and every such key exchange method is implicitly registered by
 this specification. The IESG is considered to be the owner of all
 such key exchange methods; this does NOT imply that the IESG is
 considered to be the owner of the underlying GSS-API mechanism.

Hutzelman, et al. Standards Track [Page 11]

RFC 4462 SSH GSS-API Methods May 2006

2.4. gss-group14-sha1-*

 Each of these methods specifies GSS-API authenticated Diffie-Hellman
 key exchange as described in Section 2.1 with SHA-1 as HASH, and the
 group defined in Section 8.2 of [SSH-TRANSPORT]. The method name for
 each method is the concatenation of the string "gss-group14-sha1-"
 with the Base64 encoding of the MD5 hash [MD5] of the ASN.1 DER
 encoding [ASN1] of the underlying GSS-API mechanism’s OID. Base64
 encoding is described in Section 6.8 of [MIME].

 Each and every such key exchange method is implicitly registered by
 this specification. The IESG is considered to be the owner of all
 such key exchange methods; this does NOT imply that the IESG is
 considered to be the owner of the underlying GSS-API mechanism.

2.5. gss-gex-sha1-*

 Each of these methods specifies GSS-API-authenticated Diffie-Hellman
 key exchange as described in Section 2.2 with SHA-1 as HASH. The
 method name for each method is the concatenation of the string "gss-
 gex-sha1-" with the Base64 encoding of the MD5 hash [MD5] of the
 ASN.1 DER encoding [ASN1] of the underlying GSS-API mechanism’s OID.
 Base64 encoding is described in Section 6.8 of [MIME].

 Each and every such key exchange method is implicitly registered by
 this specification. The IESG is considered to be the owner of all
 such key exchange methods; this does NOT imply that the IESG is
 considered to be the owner of the underlying GSS-API mechanism.

2.6. Other GSS-API Key Exchange Methods

 Key exchange method names starting with "gss-" are reserved for key
 exchange methods that conform to this document; in particular, for
 those methods that use the GSS-API-authenticated Diffie-Hellman key
 exchange algorithm described in Section 2.1, including any future
 methods that use different groups and/or hash functions. The intent
 is that the names for any such future methods be defined in a similar
 manner to that used in Section 2.3.

Hutzelman, et al. Standards Track [Page 12]

RFC 4462 SSH GSS-API Methods May 2006

3. GSS-API User Authentication

 This section describes a general-purpose user authentication method
 based on [GSSAPI]. It is intended to be run over the SSH user
 authentication protocol [SSH-USERAUTH].

 The authentication method name for this protocol is "gssapi-with-
 mic".

3.1. GSS-API Authentication Overview

 GSS-API authentication must maintain a context. Authentication
 begins when the client sends an SSH_MSG_USERAUTH_REQUEST, which
 specifies the mechanism OIDs the client supports.

 If the server supports any of the requested mechanism OIDs, the
 server sends an SSH_MSG_USERAUTH_GSSAPI_RESPONSE message containing
 the mechanism OID.

 After the client receives SSH_MSG_USERAUTH_GSSAPI_RESPONSE, the
 client and server exchange SSH_MSG_USERAUTH_GSSAPI_TOKEN packets
 until the authentication mechanism either succeeds or fails.

 If at any time during the exchange the client sends a new
 SSH_MSG_USERAUTH_REQUEST packet, the GSS-API context is completely
 discarded and destroyed, and any further GSS-API authentication MUST
 restart from the beginning.

 If the authentication succeeds and a non-empty user name is presented
 by the client, the SSH server implementation verifies that the user
 name is authorized based on the credentials exchanged in the GSS-API
 exchange. If the user name is not authorized, then the
 authentication MUST fail.

3.2. Initiating GSS-API Authentication

 The GSS-API authentication method is initiated when the client sends
 an SSH_MSG_USERAUTH_REQUEST:

 byte SSH_MSG_USERAUTH_REQUEST
 string user name (in ISO-10646 UTF-8 encoding)
 string service name (in US-ASCII)
 string "gssapi-with-mic" (US-ASCII method name)
 uint32 n, the number of mechanism OIDs client supports
 string[n] mechanism OIDs

 Mechanism OIDs are encoded according to the ASN.1 Distinguished
 Encoding Rules (DER), as described in [ASN1] and in Section 3.1 of

Hutzelman, et al. Standards Track [Page 13]

RFC 4462 SSH GSS-API Methods May 2006

 [GSSAPI]. The mechanism OIDs MUST be listed in order of preference,
 and the server must choose the first mechanism OID on the list that
 it supports.

 The client SHOULD send GSS-API mechanism OIDs only for mechanisms
 that are of the same priority, compared to non-GSS-API authentication
 methods. Otherwise, authentication methods may be executed out of
 order. Thus, the client could first send an SSH_MSG_USERAUTH_REQUEST
 for one GSS-API mechanism, then try public key authentication, and
 then try another GSS-API mechanism.

 If the server does not support any of the specified OIDs, the server
 MUST fail the request by sending an SSH_MSG_USERAUTH_FAILURE packet.

 The user name may be an empty string if it can be deduced from the
 results of the GSS-API authentication. If the user name is not
 empty, and the requested user does not exist, the server MAY
 disconnect or MAY send a bogus list of acceptable authentications but
 never accept any. This makes it possible for the server to avoid
 disclosing information about which accounts exist. In any case, if
 the user does not exist, the authentication request MUST NOT be
 accepted.

 Note that the ’user name’ value is encoded in ISO-10646 UTF-8. It is
 up to the server how it interprets the user name and determines
 whether the client is authorized based on his GSS-API credentials.
 In particular, the encoding used by the system for user names is a
 matter for the ssh server implementation. However, if the client
 reads the user name in some other encoding (e.g., ISO 8859-1 - ISO
 Latin1), it MUST convert the user name to ISO-10646 UTF-8 before
 transmitting, and the server MUST convert the user name to the
 encoding used on that system for user names.

 Any normalization or other preparation of names is done by the ssh
 server based on the requirements of the system, and is outside the
 scope of SSH. SSH implementations which maintain private user
 databases SHOULD prepare user names as described by [SASLPREP].

 The client MAY at any time continue with a new
 SSH_MSG_USERAUTH_REQUEST message, in which case the server MUST
 abandon the previous authentication attempt and continue with the new
 one.

3.3. Initial Server Response

 The server responds to the SSH_MSG_USERAUTH_REQUEST with either an
 SSH_MSG_USERAUTH_FAILURE if none of the mechanisms are supported or
 with an SSH_MSG_USERAUTH_GSSAPI_RESPONSE as follows:

Hutzelman, et al. Standards Track [Page 14]

RFC 4462 SSH GSS-API Methods May 2006

 byte SSH_MSG_USERAUTH_GSSAPI_RESPONSE
 string selected mechanism OID

 The mechanism OID must be one of the OIDs sent by the client in the
 SSH_MSG_USERAUTH_REQUEST packet.

3.4. GSS-API Session

 Once the mechanism OID has been selected, the client will then
 initiate an exchange of one or more pairs of
 SSH_MSG_USERAUTH_GSSAPI_TOKEN packets. These packets contain the
 tokens produced from the ’GSS_Init_sec_context()’ and
 ’GSS_Accept_sec_context()’ calls. The actual number of packets
 exchanged is determined by the underlying GSS-API mechanism.

 byte SSH_MSG_USERAUTH_GSSAPI_TOKEN
 string data returned from either GSS_Init_sec_context()
 or GSS_Accept_sec_context()

 If an error occurs during this exchange on server side, the server
 can terminate the method by sending an SSH_MSG_USERAUTH_FAILURE
 packet. If an error occurs on client side, the client can terminate
 the method by sending a new SSH_MSG_USERAUTH_REQUEST packet.

 When calling GSS_Init_sec_context(), the client MUST set
 integ_req_flag to "true" to request that per-message integrity
 protection be supported for this context. In addition,
 deleg_req_flag MAY be set to "true" to request access delegation, if
 requested by the user.

 Since the user authentication process by its nature authenticates
 only the client, the setting of mutual_req_flag is not needed for
 this process. This flag SHOULD be set to "false".

 Since the user authentication process will involve the exchange of
 only a single token once the context has been established, it is not
 necessary that the context support detection of replayed or out-of-
 sequence tokens. Thus, the setting of replay_det_req_flag and
 sequence_req_flag are not needed for this process. These flags
 SHOULD be set to "false".

 Additional SSH_MSG_USERAUTH_GSSAPI_TOKEN messages are sent if and
 only if the calls to the GSS-API routines produce send tokens of non-
 zero length.

 Any major status code other than GSS_S_COMPLETE or
 GSS_S_CONTINUE_NEEDED SHOULD be a failure.

Hutzelman, et al. Standards Track [Page 15]

RFC 4462 SSH GSS-API Methods May 2006

3.5. Binding Encryption Keys

 In some cases, it is possible to obtain improved security by allowing
 access only if the client sends a valid message integrity code (MIC)
 binding the GSS-API context to the keys used for encryption and
 integrity protection of the SSH session. With this extra level of
 protection, a "man-in-the-middle" attacker who has convinced a client
 of his authenticity cannot then relay user authentication messages
 between the real client and server, thus gaining access to the real
 server. This additional protection is available when the negotiated
 GSS-API context supports per-message integrity protection, as
 indicated by the setting of the integ_avail flag on successful return
 from GSS_Init_sec_context() or GSS_Accept_sec_context().

 When the client’s call to GSS_Init_sec_context() returns
 GSS_S_COMPLETE with the integ_avail flag set, the client MUST
 conclude the user authentication exchange by sending the following
 message:

 byte SSH_MSG_USERAUTH_GSSAPI_MIC
 string MIC

 This message MUST be sent only if GSS_Init_sec_context() returned
 GSS_S_COMPLETE. If a token is also returned, then the
 SSH_MSG_USERAUTH_GSSAPI_TOKEN message MUST be sent before this one.

 The contents of the MIC field are obtained by calling GSS_GetMIC()
 over the following, using the GSS-API context that was just
 established:

 string session identifier
 byte SSH_MSG_USERAUTH_REQUEST
 string user name
 string service
 string "gssapi-with-mic"

 If this message is received by the server before the GSS-API context
 is fully established, the server MUST fail the authentication.

 If this message is received by the server when the negotiated GSS-API
 context does not support per-message integrity protection, the server
 MUST fail the authentication.

3.6. Client Acknowledgement

 Some servers may wish to permit user authentication to proceed even
 when the negotiated GSS-API context does not support per-message
 integrity protection. In such cases, it is possible for the server

Hutzelman, et al. Standards Track [Page 16]

RFC 4462 SSH GSS-API Methods May 2006

 to successfully complete the GSS-API method, while the client’s last
 call to GSS_Init_sec_context() fails. If the server simply assumed
 success on the part of the client and completed the authentication
 service, it is possible that the client would fail to complete the
 authentication method, but not be able to retry other methods because
 the server had already moved on. To protect against this, a final
 message is sent by the client to indicate it has completed
 authentication.

 When the client’s call to GSS_Init_sec_context() returns
 GSS_S_COMPLETE with the integ_avail flag not set, the client MUST
 conclude the user authentication exchange by sending the following
 message:

 byte SSH_MSG_USERAUTH_GSSAPI_EXCHANGE_COMPLETE

 This message MUST be sent only if GSS_Init_sec_context() returned
 GSS_S_COMPLETE. If a token is also returned, then the
 SSH_MSG_USERAUTH_GSSAPI_TOKEN message MUST be sent before this one.

 If this message is received by the server before the GSS-API context
 is fully established, the server MUST fail the authentication.

 If this message is received by the server when the negotiated GSS-API
 context supports per-message integrity protection, the server MUST
 fail the authentication.

 It is a site policy decision for the server whether or not to permit
 authentication using GSS-API mechanisms and/or contexts that do not
 support per-message integrity protection. The server MAY fail the
 otherwise valid gssapi-with-mic authentication if per-message
 integrity protection is not supported.

3.7. Completion

 As with all SSH authentication methods, successful completion is
 indicated by an SSH_MSG_USERAUTH_SUCCESS if no other authentication
 is required, or an SSH_MSG_USERAUTH_FAILURE with the partial success
 flag set if the server requires further authentication. This packet
 SHOULD be sent immediately following receipt of the
 SSH_MSG_USERAUTH_GSSAPI_EXCHANGE_COMPLETE packet.

3.8. Error Status

 In the event that a GSS-API error occurs on the server during context
 establishment, the server MAY send the following message to inform
 the client of the details of the error before sending an
 SSH_MSG_USERAUTH_FAILURE message:

Hutzelman, et al. Standards Track [Page 17]

RFC 4462 SSH GSS-API Methods May 2006

 byte SSH_MSG_USERAUTH_GSSAPI_ERROR
 uint32 major_status
 uint32 minor_status
 string message
 string language tag

 The message text MUST be encoded in the UTF-8 encoding described in
 [UTF8]. Language tags are those described in [LANGTAG]. Note that
 the message text may contain multiple lines separated by carriage
 return-line feed (CRLF) sequences. Application developers should
 take this into account when displaying these messages.

 Clients receiving this message MAY log the error details and/or
 report them to the user. Any server sending this message MUST ignore
 any SSH_MSG_UNIMPLEMENTED sent by the client in response.

3.9. Error Token

 In the event that, during context establishment, a client’s call to
 GSS_Init_sec_context() or a server’s call to GSS_Accept_sec_context()
 returns a token along with an error status, the resulting "error
 token" SHOULD be sent to the peer using the following message:

 byte SSH_MSG_USERAUTH_GSSAPI_ERRTOK
 string error token

 This message implies that the authentication is about to fail, and is
 defined to allow the error token to be communicated without losing
 synchronization.

 When a server sends this message, it MUST be followed by an
 SSH_MSG_USERAUTH_FAILURE message, which is to be interpreted as
 applying to the same authentication request. A client receiving this
 message SHOULD wait for the following SSH_MSG_USERAUTH_FAILURE
 message before beginning another authentication attempt.

 When a client sends this message, it MUST be followed by a new
 authentication request or by terminating the connection. A server
 receiving this message MUST NOT send an SSH_MSG_USERAUTH_FAILURE in
 reply, since such a message might otherwise be interpreted by a
 client as a response to the following authentication sequence.

 Any server sending this message MUST ignore any SSH_MSG_UNIMPLEMENTED
 sent by the client in response. If a server sends both this message
 and an SSH_MSG_USERAUTH_GSSAPI_ERROR message, the
 SSH_MSG_USERAUTH_GSSAPI_ERROR message MUST be sent first, to allow
 the client to store and/or display the error status before processing
 the error token.

Hutzelman, et al. Standards Track [Page 18]

RFC 4462 SSH GSS-API Methods May 2006

4. Authentication Using GSS-API Key Exchange

 This section describes a user authentication method building on the
 framework described in [SSH-USERAUTH]. This method performs user
 authentication by making use of an existing GSS-API context
 established during key exchange.

 The authentication method name for this protocol is "gssapi-keyex".

 This method may be used only if the initial key exchange was
 performed using a GSS-API-based key exchange method defined in
 accordance with Section 2. The GSS-API context used with this method
 is always that established during an initial GSS-API-based key
 exchange. Any context established during key exchange for the
 purpose of rekeying MUST NOT be used with this method.

 The server SHOULD include this user authentication method in the list
 of methods that can continue (in an SSH_MSG_USERAUTH_FAILURE) if the
 initial key exchange was performed using a GSS-API-based key exchange
 method and provides information about the user’s identity that is
 useful to the server. It MUST NOT include this method if the initial
 key exchange was not performed using a GSS-API-based key exchange
 method defined in accordance with Section 2.

 The client SHOULD attempt to use this method if it is advertised by
 the server, initial key exchange was performed using a GSS-API-based
 key exchange method, and this method has not already been tried. The
 client SHOULD NOT try this method more than once per session. It
 MUST NOT try this method if initial key exchange was not performed
 using a GSS-API-based key exchange method defined in accordance with
 Section 2.

 If a server receives a request for this method when initial key
 exchange was not performed using a GSS-API-based key exchange method
 defined in accordance with Section 2, it MUST return
 SSH_MSG_USERAUTH_FAILURE.

 This method is defined as a single message:

 byte SSH_MSG_USERAUTH_REQUEST
 string user name
 string service
 string "gssapi-keyex"
 string MIC

 The contents of the MIC field are obtained by calling GSS_GetMIC over
 the following, using the GSS-API context that was established during
 initial key exchange:

Hutzelman, et al. Standards Track [Page 19]

RFC 4462 SSH GSS-API Methods May 2006

 string session identifier
 byte SSH_MSG_USERAUTH_REQUEST
 string user name
 string service
 string "gssapi-keyex"

 Upon receiving this message when initial key exchange was performed
 using a GSS-API-based key exchange method, the server uses
 GSS_VerifyMIC() to verify that the MIC received is valid. If the MIC
 is not valid, the user authentication fails, and the server MUST
 return SSH_MSG_USERAUTH_FAILURE.

 If the MIC is valid and the server is satisfied as to the user’s
 credentials, it MAY return either SSH_MSG_USERAUTH_SUCCESS or
 SSH_MSG_USERAUTH_FAILURE with the partial success flag set, depending
 on whether additional authentications are needed.

5. Null Host Key Algorithm

 The "null" host key algorithm has no associated host key material and
 provides neither signature nor encryption algorithms. Thus, it can
 be used only with key exchange methods that do not require any
 public-key operations and do not require the use of host public key
 material. The key exchange methods described in Section 2 are
 examples of such methods.

 This algorithm is used when, as a matter of configuration, the host
 does not have or does not wish to use a public key. For example, it
 can be used when the administrator has decided as a matter of policy
 to require that all key exchanges be authenticated using Kerberos
 [KRB5], and thus the only permitted key exchange method is the
 GSS-API-authenticated Diffie-Hellman exchange described above, with
 Kerberos V5 as the underlying GSS-API mechanism. In such a
 configuration, the server implementation supports the "ssh-dss" key
 algorithm (as required by [SSH-TRANSPORT]), but could be prohibited
 by configuration from using it. In this situation, the server needs
 some key exchange algorithm to advertise; the "null" algorithm fills
 this purpose.

 Note that the use of the "null" algorithm in this way means that the
 server will not be able to interoperate with clients that do not
 support this algorithm. This is not a significant problem, since in
 the configuration described, it will also be unable to interoperate
 with implementations that do not support the GSS-API-authenticated
 key exchange and Kerberos.

Hutzelman, et al. Standards Track [Page 20]

RFC 4462 SSH GSS-API Methods May 2006

 Any implementation supporting at least one key exchange method that
 conforms to Section 2 MUST also support the "null" host key
 algorithm. Servers MUST NOT advertise the "null" host key algorithm
 unless it is the only algorithm advertised.

6. Summary of Message Numbers

 The following message numbers have been defined for use with GSS-
 API-based key exchange methods:

 #define SSH_MSG_KEXGSS_INIT 30
 #define SSH_MSG_KEXGSS_CONTINUE 31
 #define SSH_MSG_KEXGSS_COMPLETE 32
 #define SSH_MSG_KEXGSS_HOSTKEY 33
 #define SSH_MSG_KEXGSS_ERROR 34
 #define SSH_MSG_KEXGSS_GROUPREQ 40
 #define SSH_MSG_KEXGSS_GROUP 41

 The numbers 30-49 are specific to key exchange and may be redefined
 by other kex methods.

 The following message numbers have been defined for use with the
 ’gssapi-with-mic’ user authentication method:

 #define SSH_MSG_USERAUTH_GSSAPI_RESPONSE 60
 #define SSH_MSG_USERAUTH_GSSAPI_TOKEN 61
 #define SSH_MSG_USERAUTH_GSSAPI_EXCHANGE_COMPLETE 63
 #define SSH_MSG_USERAUTH_GSSAPI_ERROR 64
 #define SSH_MSG_USERAUTH_GSSAPI_ERRTOK 65
 #define SSH_MSG_USERAUTH_GSSAPI_MIC 66

 The numbers 60-79 are specific to user authentication and may be
 redefined by other user auth methods. Note that in the method
 described in this document, message number 62 is unused.

Hutzelman, et al. Standards Track [Page 21]

RFC 4462 SSH GSS-API Methods May 2006

7. GSS-API Considerations

7.1. Naming Conventions

 In order to establish a GSS-API security context, the SSH client
 needs to determine the appropriate targ_name to use in identifying
 the server when calling GSS_Init_sec_context(). For this purpose,
 the GSS-API mechanism-independent name form for host-based services
 is used, as described in Section 4.1 of [GSSAPI].

 In particular, the targ_name to pass to GSS_Init_sec_context() is
 obtained by calling GSS_Import_name() with an input_name_type of
 GSS_C_NT_HOSTBASED_SERVICE, and an input_name_string consisting of
 the string "host@" concatenated with the hostname of the SSH server.

 Because the GSS-API mechanism uses the targ_name to authenticate the
 server’s identity, it is important that it be determined in a secure
 fashion. One common way to do this is to construct the targ_name
 from the hostname as typed by the user; unfortunately, because some
 GSS-API mechanisms do not canonicalize hostnames, it is likely that
 this technique will fail if the user has not typed a fully-qualified,
 canonical hostname. Thus, implementers may wish to use other
 methods, but should take care to ensure they are secure. For
 example, one should not rely on an unprotected DNS record to map a
 host alias to the primary name of a server, or an IP address to a
 hostname, since an attacker can modify the mapping and impersonate
 the server.

 Implementations of mechanisms conforming to this document MUST NOT
 use the results of insecure DNS queries to construct the targ_name.
 Clients MAY make use of a mapping provided by local configuration or
 use other secure means to determine the targ_name to be used. If a
 client system is unable to securely determine which targ_name to use,
 then it SHOULD NOT use this mechanism.

7.2. Channel Bindings

 This document recommends that channel bindings SHOULD NOT be
 specified in the calls during context establishment. This document
 does not specify any standard data to be used as channel bindings,
 and the use of network addresses as channel bindings may break SSH in
 environments where it is most useful.

Hutzelman, et al. Standards Track [Page 22]

RFC 4462 SSH GSS-API Methods May 2006

7.3. SPNEGO

 The use of the Simple and Protected GSS-API Negotiation Mechanism
 [SPNEGO] in conjunction with the authentication and key exchange
 methods described in this document is both unnecessary and
 undesirable. As a result, mechanisms conforming to this document
 MUST NOT use SPNEGO as the underlying GSS-API mechanism.

 Since SSH performs its own negotiation of authentication and key
 exchange methods, the negotiation capability of SPNEGO alone does not
 provide any added benefit. In fact, as described below, it has the
 potential to result in the use of a weaker method than desired.

 Normally, SPNEGO provides the added benefit of protecting the GSS-API
 mechanism negotiation. It does this by having the server compute a
 MIC of the list of mechanisms proposed by the client, and then
 checking that value at the client. In the case of key exchange, this
 protection is not needed because the key exchange methods described
 here already perform an equivalent operation; namely, they generate a
 MIC of the SSH exchange hash, which is a hash of several items
 including the lists of key exchange mechanisms supported by both
 sides. In the case of user authentication, the protection is not
 needed because the negotiation occurs over a secure channel, and the
 host’s identity has already been proved to the user.

 The use of SPNEGO combined with GSS-API mechanisms used without
 SPNEGO can lead to interoperability problems. For example, a client
 that supports key exchange using the Kerberos V5 GSS-API mechanism
 [KRB5-GSS] only underneath SPNEGO will not interoperate with a server
 that supports key exchange only using the Kerberos V5 GSS-API
 mechanism directly. As a result, allowing GSS-API mechanisms to be
 used both with and without SPNEGO is undesirable.

 If a client’s policy is to first prefer GSS-API-based key exchange
 method X, then non-GSS-API method Y, then GSS-API-based method Z, and
 if a server supports mechanisms Y and Z but not X, then an attempt to
 use SPNEGO to negotiate a GSS-API mechanism might result in the use
 of method Z when method Y would have been preferable. As a result,
 the use of SPNEGO could result in the subversion of the negotiation
 algorithm for key exchange methods as described in Section 7.1 of
 [SSH-TRANSPORT] and/or the negotiation algorithm for user
 authentication methods as described in [SSH-USERAUTH].

Hutzelman, et al. Standards Track [Page 23]

RFC 4462 SSH GSS-API Methods May 2006

8. IANA Considerations

 Consistent with Section 8 of [SSH-ARCH] and Section 4.6 of
 [SSH-NUMBERS], this document makes the following registrations:

 The family of SSH key exchange method names beginning with "gss-
 group1-sha1-" and not containing the at-sign (’@’), to name the
 key exchange methods defined in Section 2.3.

 The family of SSH key exchange method names beginning with "gss-
 gex-sha1-" and not containing the at-sign (’@’), to name the key
 exchange methods defined in Section 2.5.

 All other SSH key exchange method names beginning with "gss-" and
 not containing the at-sign (’@’), to be reserved for future key
 exchange methods defined in conformance with this document, as
 noted in Section 2.6.

 The SSH host public key algorithm name "null", to name the NULL
 host key algorithm defined in Section 5.

 The SSH user authentication method name "gssapi-with-mic", to name
 the GSS-API user authentication method defined in Section 3.

 The SSH user authentication method name "gssapi-keyex", to name
 the GSS-API user authentication method defined in Section 4.

 The SSH user authentication method name "gssapi" is to be
 reserved, in order to avoid conflicts with implementations
 supporting an earlier version of this specification.

 The SSH user authentication method name "external-keyx" is to be
 reserved, in order to avoid conflicts with implementations
 supporting an earlier version of this specification.

 This document creates no new registries.

9. Security Considerations

 This document describes authentication and key-exchange protocols.
 As such, security considerations are discussed throughout.

 This protocol depends on the SSH protocol itself, the GSS-API, any
 underlying GSS-API mechanisms that are used, and any protocols on
 which such mechanisms might depend. Each of these components plays a
 part in the security of the resulting connection, and each will have
 its own security considerations.

Hutzelman, et al. Standards Track [Page 24]

RFC 4462 SSH GSS-API Methods May 2006

 The key exchange method described in Section 2 depends on the
 underlying GSS-API mechanism to provide both mutual authentication
 and per-message integrity services. If either of these features is
 not supported by a particular GSS-API mechanism, or by a particular
 implementation of a GSS-API mechanism, then the key exchange is not
 secure and MUST fail.

 In order for the "external-keyx" user authentication method to be
 used, it MUST have access to user authentication information obtained
 as a side-effect of the key exchange. If this information is
 unavailable, the authentication MUST fail.

 Revealing information about the reason for an authentication failure
 may be considered by some sites to be an unacceptable security risk
 for a production environment. However, having that information
 available can be invaluable for debugging purposes. Thus, it is
 RECOMMENDED that implementations provide a means for controlling, as
 a matter of policy, whether to send SSH_MSG_USERAUTH_GSSAPI_ERROR,
 SSH_MSG_USERAUTH_GSSAPI_ERRTOK, and SSH_MSG_KEXGSS_ERROR messages,
 and SSH_MSG_KEXGSS_CONTINUE messages containing a GSS-API error
 token.

10. Acknowledgements

 The authors would like to thank the following individuals for their
 invaluable assistance and contributions to this document:

 o Sam Hartman

 o Love Hornquist-Astrand

 o Joel N. Weber II

 o Simon Wilkinson

 o Nicolas Williams

 Much of the text describing DH group exchange was borrowed from
 [GROUP-EXCHANGE], by Markus Friedl, Niels Provos, and William A.
 Simpson.

Hutzelman, et al. Standards Track [Page 25]

RFC 4462 SSH GSS-API Methods May 2006

11. References

11.1. Normative References

 [ASN1] ISO/IEC, "ASN.1 Encoding Rules: Specification of
 Basic Encoding Rules (BER), Canonical Encoding
 Rules (CER) and Distinguished Encoding Rules
 (DER)", ITU-T Recommendation X.690 (1997), ISO/
 IEC 8825-1:1998, November 1998.

 [GROUP-EXCHANGE] Friedl, M., Provos, N., and W. Simpson, "Diffie-
 Hellman Group Exchange for the Secure Shell (SSH)
 Transport Layer Protocol", RFC 4419, March 2006.

 [GSSAPI] Linn, J., "Generic Security Service Application
 Program Interface Version 2, Update 1", RFC 2743,
 January 2000.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [LANGTAG] Alvestrand, H., "Tags for the Identification of
 Languages", BCP 47, RFC 3066, January 2001.

 [MD5] Rivest, R., "The MD5 Message-Digest Algorithm", RFC
 1321, April 1992.

 [MIME] Freed, N. and N. Borenstein, "Multipurpose Internet
 Mail Extensions (MIME) Part One: Format of Internet
 Message Bodies", RFC 2045, November 1996.

 [SSH-ARCH] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [SSH-CONNECT] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, January 2006.

 [SSH-NUMBERS] Lehtinen, S. and C. Lonvick, "The Secure Shell
 (SSH) Protocol Assigned Numbers", RFC 4250, January
 2006.

 [SSH-TRANSPORT] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, January 2006.

 [SSH-USERAUTH] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, January 2006.

Hutzelman, et al. Standards Track [Page 26]

RFC 4462 SSH GSS-API Methods May 2006

 [UTF8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

11.2. Informative References

 [KRB5] Neuman, C., Yu, T., Hartman, S., and K. Raeburn,
 "The Kerberos Network Authentication Service (V5)",
 RFC 4120, July 2005.

 [KRB5-GSS] Zhu, L., Jaganathan, K., and S. Hartman, "The
 Kerberos Version 5 Generic Security Service
 Application Program Interface (GSS-API) Mechanism:
 Version 2", RFC 4121, July 2005.

 [SASLPREP] Zeilenga, K., "SASLprep: Stringprep Profile for
 User Names and Passwords", RFC 4013, February 2005.

 [SPNEGO] Zhu, L., Leach, P., Jaganathan, K., and W.
 Ingersoll, "The Simple and Protected Generic
 Security Service Application Program Interface
 (GSS-API) Negotiation Mechanism", RFC 4178, October
 2005.

Hutzelman, et al. Standards Track [Page 27]

RFC 4462 SSH GSS-API Methods May 2006

Authors’ Addresses

 Jeffrey Hutzelman
 Carnegie Mellon University
 5000 Forbes Ave
 Pittsburgh, PA 15213
 US

 Phone: +1 412 268 7225
 EMail: jhutz+@cmu.edu
 URI: http://www.cs.cmu.edu/˜jhutz/

 Joseph Salowey
 Cisco Systems
 2901 Third Avenue
 Seattle, WA 98121
 US

 Phone: +1 206 256 3380
 EMail: jsalowey@cisco.com

 Joseph Galbraith
 Van Dyke Technologies, Inc.
 4848 Tramway Ridge Dr. NE
 Suite 101
 Albuquerque, NM 87111
 US

 EMail: galb@vandyke.com

 Von Welch
 University of Chicago & Argonne National Laboratory
 Distributed Systems Laboratory
 701 E. Washington
 Urbana, IL 61801
 US

 EMail: welch@mcs.anl.gov

Hutzelman, et al. Standards Track [Page 28]

RFC 4462 SSH GSS-API Methods May 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Hutzelman, et al. Standards Track [Page 29]

