
Network Working Group S. Floyd
Request for Comments: 2914 ACIRI
BCP: 41 September 2000
Category: Best Current Practice

 Congestion Control Principles

Status of this Memo

 This document specifies an Internet Best Current Practices for the
 Internet Community, and requests discussion and suggestions for
 improvements. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 The goal of this document is to explain the need for congestion
 control in the Internet, and to discuss what constitutes correct
 congestion control. One specific goal is to illustrate the dangers
 of neglecting to apply proper congestion control. A second goal is
 to discuss the role of the IETF in standardizing new congestion
 control protocols.

1. Introduction

 This document draws heavily from earlier RFCs, in some cases
 reproducing entire sections of the text of earlier documents
 [RFC2309, RFC2357]. We have also borrowed heavily from earlier
 publications addressing the need for end-to-end congestion control
 [FF99].

2. Current standards on congestion control

 IETF standards concerning end-to-end congestion control focus either
 on specific protocols (e.g., TCP [RFC2581], reliable multicast
 protocols [RFC2357]) or on the syntax and semantics of communications
 between the end nodes and routers about congestion information (e.g.,
 Explicit Congestion Notification [RFC2481]) or desired quality-of-
 service (diff-serv)). The role of end-to-end congestion control is
 also discussed in an Informational RFC on "Recommendations on Queue
 Management and Congestion Avoidance in the Internet" [RFC2309]. RFC
 2309 recommends the deployment of active queue management mechanisms
 in routers, and the continuation of design efforts towards mechanisms

Floyd, ed. Best Current Practice [Page 1]

RFC 2914 Congestion Control Principles September 2000

 in routers to deal with flows that are unresponsive to congestion
 notification. We freely borrow from RFC 2309 some of their general
 discussion of end-to-end congestion control.

 In contrast to the RFCs discussed above, this document is a more
 general discussion of the principles of congestion control. One of
 the keys to the success of the Internet has been the congestion
 avoidance mechanisms of TCP. While TCP is still the dominant
 transport protocol in the Internet, it is not ubiquitous, and there
 are an increasing number of applications that, for one reason or
 another, choose not to use TCP. Such traffic includes not only
 multicast traffic, but unicast traffic such as streaming multimedia
 that does not require reliability; and traffic such as DNS or routing
 messages that consist of short transfers deemed critical to the
 operation of the network. Much of this traffic does not use any form
 of either bandwidth reservations or end-to-end congestion control.
 The continued use of end-to-end congestion control by best-effort
 traffic is critical for maintaining the stability of the Internet.

 This document also discusses the general role of the IETF in the
 standardization of new congestion control protocols.

 The discussion of congestion control principles for differentiated
 services or integrated services is not addressed in this document.
 Some categories of integrated or differentiated services include a
 guarantee by the network of end-to-end bandwidth, and as such do not
 require end-to-end congestion control mechanisms.

3. The development of end-to-end congestion control.

3.1. Preventing congestion collapse.

 The Internet protocol architecture is based on a connectionless end-
 to-end packet service using the IP protocol. The advantages of its
 connectionless design, flexibility and robustness, have been amply
 demonstrated. However, these advantages are not without cost:
 careful design is required to provide good service under heavy load.
 In fact, lack of attention to the dynamics of packet forwarding can
 result in severe service degradation or "Internet meltdown". This
 phenomenon was first observed during the early growth phase of the
 Internet of the mid 1980s [RFC896], and is technically called
 "congestion collapse".

 The original specification of TCP [RFC793] included window-based flow
 control as a means for the receiver to govern the amount of data sent
 by the sender. This flow control was used to prevent overflow of the
 receiver’s data buffer space available for that connection. [RFC793]

Floyd, ed. Best Current Practice [Page 2]

RFC 2914 Congestion Control Principles September 2000

 reported that segments could be lost due either to errors or to
 network congestion, but did not include dynamic adjustment of the
 flow-control window in response to congestion.

 The original fix for Internet meltdown was provided by Van Jacobson.
 Beginning in 1986, Jacobson developed the congestion avoidance
 mechanisms that are now required in TCP implementations [Jacobson88,
 RFC 2581]. These mechanisms operate in the hosts to cause TCP
 connections to "back off" during congestion. We say that TCP flows
 are "responsive" to congestion signals (i.e., dropped packets) from
 the network. It is these TCP congestion avoidance algorithms that
 prevent the congestion collapse of today’s Internet.

 However, that is not the end of the story. Considerable research has
 been done on Internet dynamics since 1988, and the Internet has
 grown. It has become clear that the TCP congestion avoidance
 mechanisms [RFC2581], while necessary and powerful, are not
 sufficient to provide good service in all circumstances. In addition
 to the development of new congestion control mechanisms [RFC2357],
 router-based mechanisms are in development that complement the
 endpoint congestion avoidance mechanisms.

 A major issue that still needs to be addressed is the potential for
 future congestion collapse of the Internet due to flows that do not
 use responsible end-to-end congestion control. RFC 896 [RFC896]
 suggested in 1984 that gateways should detect and ‘squelch’
 misbehaving hosts: "Failure to respond to an ICMP Source Quench
 message, though, should be regarded as grounds for action by a
 gateway to disconnect a host. Detecting such failure is non-trivial
 but is a worthwhile area for further research." Current papers
 still propose that routers detect and penalize flows that are not
 employing acceptable end-to-end congestion control [FF99].

3.2. Fairness

 In addition to a concern about congestion collapse, there is a
 concern about ‘fairness’ for best-effort traffic. Because TCP "backs
 off" during congestion, a large number of TCP connections can share a
 single, congested link in such a way that bandwidth is shared
 reasonably equitably among similarly situated flows. The equitable
 sharing of bandwidth among flows depends on the fact that all flows
 are running compatible congestion control algorithms. For TCP, this
 means congestion control algorithms conformant with the current TCP
 specification [RFC793, RFC1122, RFC2581].

 The issue of fairness among competing flows has become increasingly
 important for several reasons. First, using window scaling
 [RFC1323], individual TCPs can use high bandwidth even over high-

Floyd, ed. Best Current Practice [Page 3]

RFC 2914 Congestion Control Principles September 2000

 propagation-delay paths. Second, with the growth of the web,
 Internet users increasingly want high-bandwidth and low-delay
 communications, rather than the leisurely transfer of a long file in
 the background. The growth of best-effort traffic that does not use
 TCP underscores this concern about fairness between competing best-
 effort traffic in times of congestion.

 The popularity of the Internet has caused a proliferation in the
 number of TCP implementations. Some of these may fail to implement
 the TCP congestion avoidance mechanisms correctly because of poor
 implementation [RFC2525]. Others may deliberately be implemented
 with congestion avoidance algorithms that are more aggressive in
 their use of bandwidth than other TCP implementations; this would
 allow a vendor to claim to have a "faster TCP". The logical
 consequence of such implementations would be a spiral of increasingly
 aggressive TCP implementations, or increasingly aggressive transport
 protocols, leading back to the point where there is effectively no
 congestion avoidance and the Internet is chronically congested.

 There is a well-known way to achieve more aggressive performance
 without even changing the transport protocol, by changing the level
 of granularity: open multiple connections to the same place, as has
 been done in the past by some Web browsers. Thus, instead of a
 spiral of increasingly aggressive transport protocols, we would
 instead have a spiral of increasingly aggressive web browsers, or
 increasingly aggressive applications.

 This raises the issue of the appropriate granularity of a "flow",
 where we define a ‘flow’ as the level of granularity appropriate for
 the application of both fairness and congestion control. From RFC
 2309: "There are a few ‘natural’ answers: 1) a TCP or UDP connection
 (source address/port, destination address/port); 2) a
 source/destination host pair; 3) a given source host or a given
 destination host. We would guess that the source/destination host
 pair gives the most appropriate granularity in many circumstances.
 The granularity of flows for congestion management is, at least in
 part, a policy question that needs to be addressed in the wider IETF
 community."

 Again borrowing from RFC 2309, we use the term "TCP-compatible" for a
 flow that behaves under congestion like a flow produced by a
 conformant TCP. A TCP-compatible flow is responsive to congestion
 notification, and in steady-state uses no more bandwidth than a
 conformant TCP running under comparable conditions (drop rate, RTT,
 MTU, etc.)

Floyd, ed. Best Current Practice [Page 4]

RFC 2914 Congestion Control Principles September 2000

 It is convenient to divide flows into three classes: (1) TCP-
 compatible flows, (2) unresponsive flows, i.e., flows that do not
 slow down when congestion occurs, and (3) flows that are responsive
 but are not TCP-compatible. The last two classes contain more
 aggressive flows that pose significant threats to Internet
 performance, as we discuss below.

 In addition to steady-state fairness, the fairness of the initial
 slow-start is also a concern. One concern is the transient effect on
 other flows of a flow with an overly-aggressive slow-start procedure.
 Slow-start performance is particularly important for the many flows
 that are short-lived, and only have a small amount of data to
 transfer.

3.3. Optimizing performance regarding throughput, delay, and loss.

 In addition to the prevention of congestion collapse and concerns
 about fairness, a third reason for a flow to use end-to-end
 congestion control can be to optimize its own performance regarding
 throughput, delay, and loss. In some circumstances, for example in
 environments of high statistical multiplexing, the delay and loss
 rate experienced by a flow are largely independent of its own sending
 rate. However, in environments with lower levels of statistical
 multiplexing or with per-flow scheduling, the delay and loss rate
 experienced by a flow is in part a function of the flow’s own sending
 rate. Thus, a flow can use end-to-end congestion control to limit
 the delay or loss experienced by its own packets. We would note,
 however, that in an environment like the current best-effort
 Internet, concerns regarding congestion collapse and fairness with
 competing flows limit the range of congestion control behaviors
 available to a flow.

4. The role of the standards process

 The standardization of a transport protocol includes not only
 standardization of aspects of the protocol that could affect
 interoperability (e.g., information exchanged by the end-nodes), but
 also standardization of mechanisms deemed critical to performance
 (e.g., in TCP, reduction of the congestion window in response to a
 packet drop). At the same time, implementation-specific details and
 other aspects of the transport protocol that do not affect
 interoperability and do not significantly interfere with performance
 do not require standardization. Areas of TCP that do not require
 standardization include the details of TCP’s Fast Recovery procedure
 after a Fast Retransmit [RFC2582]. The appendix uses examples from
 TCP to discuss in more detail the role of the standards process in
 the development of congestion control.

Floyd, ed. Best Current Practice [Page 5]

RFC 2914 Congestion Control Principles September 2000

4.1. The development of new transport protocols.

 In addition to addressing the danger of congestion collapse, the
 standardization process for new transport protocols takes care to
 avoid a congestion control ‘arms race’ among competing protocols. As
 an example, in RFC 2357 [RFC2357] the TSV Area Directors and their
 Directorate outline criteria for the publication as RFCs of
 Internet-Drafts on reliable multicast transport protocols. From
 [RFC2357]: "A particular concern for the IETF is the impact of
 reliable multicast traffic on other traffic in the Internet in times
 of congestion, in particular the effect of reliable multicast traffic
 on competing TCP traffic.... The challenge to the IETF is to
 encourage research and implementations of reliable multicast, and to
 enable the needs of applications for reliable multicast to be met as
 expeditiously as possible, while at the same time protecting the
 Internet from the congestion disaster or collapse that could result
 from the widespread use of applications with inappropriate reliable
 multicast mechanisms."

 The list of technical criteria that must be addressed by RFCs on new
 reliable multicast transport protocols include the following: "Is
 there a congestion control mechanism? How well does it perform? When
 does it fail? Note that congestion control mechanisms that operate
 on the network more aggressively than TCP will face a great burden of
 proof that they don’t threaten network stability."

 It is reasonable to expect that these concerns about the effect of
 new transport protocols on competing traffic will apply not only to
 reliable multicast protocols, but to unreliable unicast, reliable
 unicast, and unreliable multicast traffic as well.

4.2. Application-level issues that affect congestion control

 The specific issue of a browser opening multiple connections to the
 same destination has been addressed by RFC 2616 [RFC2616], which
 states in Section 8.1.4 that "Clients that use persistent connections
 SHOULD limit the number of simultaneous connections that they
 maintain to a given server. A single-user client SHOULD NOT maintain
 more than 2 connections with any server or proxy."

4.3. New developments in the standards process

 The most obvious developments in the IETF that could affect the
 evolution of congestion control are the development of integrated and
 differentiated services [RFC2212, RFC2475] and of Explicit Congestion
 Notification (ECN) [RFC2481]. However, other less dramatic
 developments are likely to affect congestion control as well.

Floyd, ed. Best Current Practice [Page 6]

RFC 2914 Congestion Control Principles September 2000

 One such effort is that to construct Endpoint Congestion Management
 [BS00], to enable multiple concurrent flows from a sender to the same
 receiver to share congestion control state. By allowing multiple
 connections to the same destination to act as one flow in terms of
 end-to-end congestion control, a Congestion Manager could allow
 individual connections slow-starting to take advantage of previous
 information about the congestion state of the end-to-end path.
 Further, the use of a Congestion Manager could remove the congestion
 control dangers of multiple flows being opened between the same
 source/destination pair, and could perhaps be used to allow a browser
 to open many simultaneous connections to the same destination.

5. A description of congestion collapse

 This section discusses congestion collapse from undelivered packets
 in some detail, and shows how unresponsive flows could contribute to
 congestion collapse in the Internet. This section draws heavily on
 material from [FF99].

 Informally, congestion collapse occurs when an increase in the
 network load results in a decrease in the useful work done by the
 network. As discussed in Section 3, congestion collapse was first
 reported in the mid 1980s [RFC896], and was largely due to TCP
 connections unnecessarily retransmitting packets that were either in
 transit or had already been received at the receiver. We call the
 congestion collapse that results from the unnecessary retransmission
 of packets classical congestion collapse. Classical congestion
 collapse is a stable condition that can result in throughput that is
 a small fraction of normal [RFC896]. Problems with classical
 congestion collapse have generally been corrected by the timer
 improvements and congestion control mechanisms in modern
 implementations of TCP [Jacobson88].

 A second form of potential congestion collapse occurs due to
 undelivered packets. Congestion collapse from undelivered packets
 arises when bandwidth is wasted by delivering packets through the
 network that are dropped before reaching their ultimate destination.
 This is probably the largest unresolved danger with respect to
 congestion collapse in the Internet today. Different scenarios can
 result in different degrees of congestion collapse, in terms of the
 fraction of the congested links’ bandwidth used for productive work.
 The danger of congestion collapse from undelivered packets is due
 primarily to the increasing deployment of open-loop applications not
 using end-to-end congestion control. Even more destructive would be
 best-effort applications that *increase* their sending rate in
 response to an increased packet drop rate (e.g., automatically using
 an increased level of FEC).

Floyd, ed. Best Current Practice [Page 7]

RFC 2914 Congestion Control Principles September 2000

 Table 1 gives the results from a scenario with congestion collapse
 from undelivered packets, where scarce bandwidth is wasted by packets
 that never reach their destination. The simulation uses a scenario
 with three TCP flows and one UDP flow competing over a congested 1.5
 Mbps link. The access links for all nodes are 10 Mbps, except that
 the access link to the receiver of the UDP flow is 128 Kbps, only 9%
 of the bandwidth of shared link. When the UDP source rate exceeds
 128 Kbps, most of the UDP packets will be dropped at the output port
 to that final link.

 UDP
 Arrival UDP TCP Total
 Rate Goodput Goodput Goodput

 0.7 0.7 98.5 99.2
 1.8 1.7 97.3 99.1
 2.6 2.6 96.0 98.6
 5.3 5.2 92.7 97.9
 8.8 8.4 87.1 95.5
 10.5 8.4 84.8 93.2
 13.1 8.4 81.4 89.8
 17.5 8.4 77.3 85.7
 26.3 8.4 64.5 72.8
 52.6 8.4 38.1 46.4
 58.4 8.4 32.8 41.2
 65.7 8.4 28.5 36.8
 75.1 8.4 19.7 28.1
 87.6 8.4 11.3 19.7
 105.2 8.4 3.4 11.8
 131.5 8.4 2.4 10.7

 Table 1. A simulation with three TCP flows and one UDP flow.

 Table 1 shows the UDP arrival rate from the sender, the UDP goodput
 (defined as the bandwidth delivered to the receiver), the TCP goodput
 (as delivered to the TCP receivers), and the aggregate goodput on the
 congested 1.5 Mbps link. Each rate is given as a fraction of the
 bandwidth of the congested link. As the UDP source rate increases,
 the TCP goodput decreases roughly linearly, and the UDP goodput is
 nearly constant. Thus, as the UDP flow increases its offered load,
 its only effect is to hurt the TCP and aggregate goodput. On the
 congested link, the UDP flow ultimately ‘wastes’ the bandwidth that
 could have been used by the TCP flow, and reduces the goodput in the
 network as a whole down to a small fraction of the bandwidth of the
 congested link.

Floyd, ed. Best Current Practice [Page 8]

RFC 2914 Congestion Control Principles September 2000

 The simulations in Table 1 illustrate both unfairness and congestion
 collapse. As [FF99] discusses, compatible congestion control is not
 the only way to provide fairness; per-flow scheduling at the
 congested routers is an alternative mechanism at the routers that
 guarantees fairness. However, as discussed in [FF99], per-flow
 scheduling can not be relied upon to prevent congestion collapse.

 There are only two alternatives for eliminating the danger of
 congestion collapse from undelivered packets. The first alternative
 for preventing congestion collapse from undelivered packets is the
 use of effective end-to-end congestion control by the end nodes.
 More specifically, the requirement would be that a flow avoid a
 pattern of significant losses at links downstream from the first
 congested link on the path. (Here, we would consider any link a
 ‘congested link’ if any flow is using bandwidth that would otherwise
 be used by other traffic on the link.) Given that an end-node is
 generally unable to distinguish between a path with one congested
 link and a path with multiple congested links, the most reliable way
 for a flow to avoid a pattern of significant losses at a downstream
 congested link is for the flow to use end-to-end congestion control,
 and reduce its sending rate in the presence of loss.

 A second alternative for preventing congestion collapse from
 undelivered packets would be a guarantee by the network that packets
 accepted at a congested link in the network will be delivered all the
 way to the receiver [RFC2212, RFC2475]. We note that the choice
 between the first alternative of end-to-end congestion control and
 the second alternative of end-to-end bandwidth guarantees does not
 have to be an either/or decision; congestion collapse can be
 prevented by the use of effective end-to-end congestion by some of
 the traffic, and the use of end-to-end bandwidth guarantees from the
 network for the rest of the traffic.

6. Forms of end-to-end congestion control

 This document has discussed concerns about congestion collapse and
 about fairness with TCP for new forms of congestion control. This
 does not mean, however, that concerns about congestion collapse and
 fairness with TCP necessitate that all best-effort traffic deploy
 congestion control based on TCP’s Additive-Increase Multiplicative-
 Decrease (AIMD) algorithm of reducing the sending rate in half in
 response to each packet drop. This section separately discusses the
 implications of these two concerns of congestion collapse and
 fairness with TCP.

Floyd, ed. Best Current Practice [Page 9]

RFC 2914 Congestion Control Principles September 2000

6.1. End-to-end congestion control for avoiding congestion collapse.

 The avoidance of congestion collapse from undelivered packets
 requires that flows avoid a scenario of a high sending rate, multiple
 congested links, and a persistent high packet drop rate at the
 downstream link. Because congestion collapse from undelivered
 packets consists of packets that waste valuable bandwidth only to be
 dropped downstream, this form of congestion collapse is not possible
 in an environment where each flow traverses only one congested link,
 or where only a small number of packets are dropped at links
 downstream of the first congested link. Thus, any form of congestion
 control that successfully avoids a high sending rate in the presence
 of a high packet drop rate should be sufficient to avoid congestion
 collapse from undelivered packets.

 We would note that the addition of Explicit Congestion Notification
 (ECN) to the IP architecture would not, in and of itself, remove the
 danger of congestion collapse for best-effort traffic. ECN allows
 routers to set a bit in packet headers as an indication of congestion
 to the end-nodes, rather than being forced to rely on packet drops to
 indicate congestion. However, with ECN, packet-marking would replace
 packet-dropping only in times of moderate congestion. In particular,
 when congestion is heavy, and a router’s buffers overflow, the router
 has no choice but to drop arriving packets.

6.2. End-to-end congestion control for fairness with TCP.

 The concern expressed in [RFC2357] about fairness with TCP places a
 significant though not crippling constraint on the range of viable
 end-to-end congestion control mechanisms for best-effort traffic. An
 environment with per-flow scheduling at all congested links would
 isolate flows from each other, and eliminate the need for congestion
 control mechanisms to be TCP-compatible. An environment with
 differentiated services, where flows marked as belonging to a certain
 diff-serv class would be scheduled in isolation from best-effort
 traffic, could allow the emergence of an entire diff-serv class of
 traffic where congestion control was not required to be TCP-
 compatible. Similarly, a pricing-controlled environment, or a diff-
 serv class with its own pricing paradigm, could supercede the concern
 about fairness with TCP. However, for the current Internet
 environment, where other best-effort traffic could compete in a FIFO
 queue with TCP traffic, the absence of fairness with TCP could lead
 to one flow ‘starving out’ another flow in a time of high congestion,
 as was illustrated in Table 1 above.

 However, the list of TCP-compatible congestion control procedures is
 not limited to AIMD with the same increase/ decrease parameters as
 TCP. Other TCP-compatible congestion control procedures include

Floyd, ed. Best Current Practice [Page 10]

RFC 2914 Congestion Control Principles September 2000

 rate-based variants of AIMD; AIMD with different sets of
 increase/decrease parameters that give the same steady-state
 behavior; equation-based congestion control where the sender adjusts
 its sending rate in response to information about the long-term
 packet drop rate; layered multicast where receivers subscribe and
 unsubscribe from layered multicast groups; and possibly other forms
 that we have not yet begun to consider.

7. Acknowledgements

 Much of this document draws directly on previous RFCs addressing
 end-to-end congestion control. This attempts to be a summary of
 ideas that have been discussed for many years, and by many people.
 In particular, acknowledgement is due to the members of the End-to-
 End Research Group, the Reliable Multicast Research Group, and the
 Transport Area Directorate. This document has also benefited from
 discussion and feedback from the Transport Area Working Group.
 Particular thanks are due to Mark Allman for feedback on an earlier
 version of this document.

8. References

 [BS00] Balakrishnan H. and S. Seshan, "The Congestion Manager",
 Work in Progress.

 [DMKM00] Dawkins, S., Montenegro, G., Kojo, M. and V. Magret,
 "End-to-end Performance Implications of Slow Links",
 Work in Progress.

 [FF99] Floyd, S. and K. Fall, "Promoting the Use of End-to-End
 Congestion Control in the Internet", IEEE/ACM
 Transactions on Networking, August 1999. URL
 http://www.aciri.org/floyd/end2end-paper.html

 [HPF00] Handley, M., Padhye, J. and S. Floyd, "TCP Congestion
 Window Validation", RFC 2861, June 2000.

 [Jacobson88] V. Jacobson, Congestion Avoidance and Control, ACM
 SIGCOMM ’88, August 1988.

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC896] Nagle, J., "Congestion Control in IP/TCP", RFC 896,
 January 1984.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts --
 Communication Layers", STD 3, RFC 1122, October 1989.

Floyd, ed. Best Current Practice [Page 11]

RFC 2914 Congestion Control Principles September 2000

 [RFC1323] Jacobson, V., Braden, R. and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2212] Shenker, S., Partridge, C. and R. Guerin, "Specification
 of Guaranteed Quality of Service", RFC 2212, September
 1997.

 [RFC2309] Braden, R., Clark, D., Crowcroft, J., Davie, B.,
 Deering, S., Estrin, D., Floyd, S., Jacobson, V.,
 Minshall, G., Partridge, C., Peterson, L., Ramakrishnan,
 K.K., Shenker, S., Wroclawski, J., and L. Zhang,
 "Recommendations on Queue Management and Congestion
 Avoidance in the Internet", RFC 2309, April 1998.

 [RFC2357] Mankin, A., Romanow, A., Bradner, S. and V. Paxson,
 "IETF Criteria for Evaluating Reliable Multicast
 Transport and Application Protocols", RFC 2357, June
 1998.

 [RFC2414] Allman, M., Floyd, S. and C. Partridge, "Increasing
 TCP’s Initial Window", RFC 2414, September 1998.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, December 1998.

 [RFC2481] Ramakrishnan K. and S. Floyd, "A Proposal to add
 Explicit Congestion Notification (ECN) to IP", RFC 2481,
 January 1999.

 [RFC2525] Paxson, V., Allman, M., Dawson, S., Fenner, W., Griner,
 J., Heavens, I., Lahey, K., Semke, J. and B. Volz,
 "Known TCP Implementation Problems", RFC 2525, March
 1999.

 [RFC2581] Allman, M., Paxson, V. and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2582] Floyd, S. and T. Henderson, "The NewReno Modification to
 TCP’s Fast Recovery Algorithm", RFC 2582, April 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

Floyd, ed. Best Current Practice [Page 12]

RFC 2914 Congestion Control Principles September 2000

 [SCWA99] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson,
 TCP Congestion Control with a Misbehaving Receiver, ACM
 Computer Communications Review, October 1999.

 [TCPB98] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan
 Seshan, Mark Stemm, and Randy H. Katz, TCP Behavior of a
 Busy Internet Server: Analysis and Improvements, IEEE
 Infocom, March 1998. Available from:
 "http://www.cs.berkeley.edu/˜hari/papers/infocom98.ps.gz".

 [TCPF98] Dong Lin and H.T. Kung, TCP Fast Recovery Strategies:
 Analysis and Improvements, IEEE Infocom, March 1998.
 Available from:
 "http://www.eecs.harvard.edu/networking/papers/infocom-
 tcp-final-198.pdf".

9. TCP-Specific issues

 In this section we discuss some of the particulars of TCP congestion
 control, to illustrate a realization of the congestion control
 principles, including some of the details that arise when
 incorporating them into a production transport protocol.

9.1. Slow-start.

 The TCP sender can not open a new connection by sending a large burst
 of data (e.g., a receiver’s advertised window) all at once. The TCP
 sender is limited by a small initial value for the congestion window.
 During slow-start, the TCP sender can increase its sending rate by at
 most a factor of two in one roundtrip time. Slow-start ends when
 congestion is detected, or when the sender’s congestion window is
 greater than the slow-start threshold ssthresh.

 An issue that potentially affects global congestion control, and
 therefore has been explicitly addressed in the standards process,
 includes an increase in the value of the initial window
 [RFC2414,RFC2581].

 Issues that have not been addressed in the standards process, and are
 generally considered not to require standardization, include such
 issues as the use (or non-use) of rate-based pacing, and mechanisms
 for ending slow-start early, before the congestion window reaches
 ssthresh. Such mechanisms result in slow-start behavior that is as
 conservative or more conservative than standard TCP.

Floyd, ed. Best Current Practice [Page 13]

RFC 2914 Congestion Control Principles September 2000

9.2. Additive Increase, Multiplicative Decrease.

 In the absence of congestion, the TCP sender increases its congestion
 window by at most one packet per roundtrip time. In response to a
 congestion indication, the TCP sender decreases its congestion window
 by half. (More precisely, the new congestion window is half of the
 minimum of the congestion window and the receiver’s advertised
 window.)

 An issue that potentially affects global congestion control, and
 therefore would be likely to be explicitly addressed in the standards
 process, would include a proposed addition of congestion control for
 the return stream of ‘pure acks’.

 An issue that has not been addressed in the standards process, and is
 generally not considered to require standardization, would be a
 change to the congestion window to apply as an upper bound on the
 number of bytes presumed to be in the pipe, instead of applying as a
 sliding window starting from the cumulative acknowledgement.
 (Clearly, the receiver’s advertised window applies as a sliding
 window starting from the cumulative acknowledgement field, because
 packets received above the cumulative acknowledgement field are held
 in TCP’s receive buffer, and have not been delivered to the
 application. However, the congestion window applies to the number of
 packets outstanding in the pipe, and does not necessarily have to
 include packets that have been received out-of-order by the TCP
 receiver.)

9.3. Retransmit timers.

 The TCP sender sets a retransmit timer to infer that a packet has
 been dropped in the network. When the retransmit timer expires, the
 sender infers that a packet has been lost, sets ssthresh to half of
 the current window, and goes into slow-start, retransmitting the lost
 packet. If the retransmit timer expires because no acknowledgement
 has been received for a retransmitted packet, the retransmit timer is
 also "backed-off", doubling the value of the next retransmit timeout
 interval.

 An issue that potentially affects global congestion control, and
 therefore would be likely to be explicitly addressed in the standards
 process, might include a modified mechanism for setting the
 retransmit timer that could significantly increase the number of
 retransmit timers that expire prematurely, when the acknowledgement
 has not yet arrived at the sender, but in fact no packets have been
 dropped. This could be of concern to the Internet standards process

Floyd, ed. Best Current Practice [Page 14]

RFC 2914 Congestion Control Principles September 2000

 because retransmit timers that expire prematurely could lead to an
 increase in the number of packets unnecessarily transmitted on a
 congested link.

9.4. Fast Retransmit and Fast Recovery.

 After seeing three duplicate acknowledgements, the TCP sender infers
 a packet loss. The TCP sender sets ssthresh to half of the current
 window, reduces the congestion window to at most half of the previous
 window, and retransmits the lost packet.

 An issue that potentially affects global congestion control, and
 therefore would be likely to be explicitly addressed in the standards
 process, might include a proposal (if there was one) for inferring a
 lost packet after only one or two duplicate acknowledgements. If
 poorly designed, such a proposal could lead to an increase in the
 number of packets unnecessarily transmitted on a congested path.

 An issue that has not been addressed in the standards process, and
 would not be expected to require standardization, would be a proposal
 to send a "new" or presumed-lost packet in response to a duplicate or
 partial acknowledgement, if allowed by the congestion window. An
 example of this would be sending a new packet in response to a single
 duplicate acknowledgement, to keep the ‘ack clock’ going in case no
 further acknowledgements would have arrived. Such a proposal is an
 example of a beneficial change that does not involve interoperability
 and does not affect global congestion control, and that therefore
 could be implemented by vendors without requiring the intervention of
 the IETF standards process. (This issue has in fact been addressed
 in [DMKM00], which suggests that "researchers may wish to experiment
 with injecting new traffic into the network when duplicate
 acknowledgements are being received, as described in [TCPB98] and
 [TCPF98]."

9.5. Other aspects of TCP congestion control.

 Other aspects of TCP congestion control that have not been discussed
 in any of the sections above include TCP’s recovery from an idle or
 application-limited period [HPF00].

10. Security Considerations

 This document has been about the risks associated with congestion
 control, or with the absence of congestion control. Section 3.2
 discusses the potentials for unfairness if competing flows don’t use
 compatible congestion control mechanisms, and Section 5 considers the
 dangers of congestion collapse if flows don’t use end-to-end
 congestion control.

Floyd, ed. Best Current Practice [Page 15]

RFC 2914 Congestion Control Principles September 2000

 Because this document does not propose any specific congestion
 control mechanisms, it is also not necessary to present specific
 security measures associated with congestion control. However, we
 would note that there are a range of security considerations
 associated with congestion control that should be considered in IETF
 documents.

 For example, individual congestion control mechanisms should be as
 robust as possible to the attempts of individual end-nodes to subvert
 end-to-end congestion control [SCWA99]. This is a particular concern
 in multicast congestion control, because of the far-reaching
 distribution of the traffic and the greater opportunities for
 individual receivers to fail to report congestion.

 RFC 2309 also discussed the potential dangers to the Internet of
 unresponsive flows, that is, flows that don’t reduce their sending
 rate in the presence of congestion, and describes the need for
 mechanisms in the network to deal with flows that are unresponsive to
 congestion notification. We would note that there is still a need
 for research, engineering, measurement, and deployment in these
 areas.

 Because the Internet aggregates very large numbers of flows, the risk
 to the whole infrastructure of subverting the congestion control of a
 few individual flows is limited. Rather, the risk to the
 infrastructure would come from the widespread deployment of many
 end-nodes subverting end-to-end congestion control.

AUTHOR’S ADDRESS

 Sally Floyd
 AT&T Center for Internet Research at ICSI (ACIRI)

 Phone: +1 (510) 642-4274 x189
 EMail: floyd@aciri.org
 URL: http://www.aciri.org/floyd/

Floyd, ed. Best Current Practice [Page 16]

RFC 2914 Congestion Control Principles September 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Floyd, ed. Best Current Practice [Page 17]

