
Network Working Group A. Bierman
Request for Comments: 2895 C. Bucci
Obsoletes: 2074 Cisco Systems, Inc.
Category: Standards Track R. Iddon
 3Com, Inc.
 August 2000

 Remote Network Monitoring MIB Protocol Identifier Reference

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This memo defines a notation describing protocol layers in a protocol
 encapsulation, specifically for use in encoding INDEX values for the
 protocolDirTable, found in the RMON-2 MIB (Remote Network Monitoring
 Management Information Base) [RFC2021]. The definitions for the
 standard protocol directory base layer identifiers are also included.

 The first version of the RMON Protocol Identifiers Document [RFC2074]
 has been split into a standards-track Reference portion (this
 document), and an Informational document. The RMON Protocol
 Identifier Macros document [RFC2896] now contains the non-normative
 portion of that specification.

 This document obsoletes RFC 2074.

Bierman, et al. Standards Track [Page 1]

RFC 2895 RMON PI Reference August 2000

Table of Contents

 1 The SNMP Network Management Framework 3
 2 Overview ... 3
 2.1 Terms .. 4
 2.2 Relationship to the Remote Network Monitoring MIB 6
 2.3 Relationship to the RMON Protocol Identifier Macros Document . 6
 2.4 Relationship to the ATM-RMON MIB 7
 2.4.1 Port Aggregation ... 7
 2.4.2 Encapsulation Mappings 7
 2.4.3 Counting ATM Traffic in RMON-2 Collections 8
 2.5 Relationship to Other MIBs 9
 3 Protocol Identifier Encoding 9
 3.1 ProtocolDirTable INDEX Format Examples 11
 3.2 Protocol Identifier Macro Format 12
 3.2.1 Lexical Conventions .. 12
 3.2.2 Notation for Syntax Descriptions 13
 3.2.3 Grammar for the PI Language 13
 3.2.4 Mapping of the Protocol Name 15
 3.2.5 Mapping of the VARIANT-OF Clause 16
 3.2.6 Mapping of the PARAMETERS Clause 17
 3.2.6.1 Mapping of the ’countsFragments(0)’ BIT 18
 3.2.6.2 Mapping of the ’tracksSessions(1)’ BIT 18
 3.2.7 Mapping of the ATTRIBUTES Clause 18
 3.2.8 Mapping of the DESCRIPTION Clause 19
 3.2.9 Mapping of the CHILDREN Clause 19
 3.2.10 Mapping of the ADDRESS-FORMAT Clause 20
 3.2.11 Mapping of the DECODING Clause 20
 3.2.12 Mapping of the REFERENCE Clause 20
 3.3 Evaluating an Index of the ProtocolDirTable 21
 4 Base Layer Protocol Identifier Macros 22
 4.1 Base Identifier Encoding 22
 4.1.1 Protocol Identifier Functions 22
 4.1.1.1 Function 0: None ... 23
 4.1.1.2 Function 1: Protocol Wildcard Function 23
 4.2 Base Layer Protocol Identifiers 24
 4.3 Encapsulation Layers ... 31
 4.3.1 IEEE 802.1Q .. 31
 5 Intellectual Property .. 34
 6 Acknowledgements ... 35
 7 References ... 35
 8 IANA Considerations .. 39
 9 Security Considerations .. 39
 10 Authors’ Addresses .. 40
 Appendix A ... 41
 11 Full Copyright Statement 42

Bierman, et al. Standards Track [Page 2]

RFC 2895 RMON PI Reference August 2000

1. The SNMP Network Management Framework

 The SNMP Management Framework presently consists of five major
 components:

 o An overall architecture, described in RFC 2571 [RFC2571].

 o Mechanisms for describing and naming objects and events for the
 purpose of management. The first version of this Structure of
 Management Information (SMI) is called SMIv1 and described in STD
 16, RFC 1155 [RFC1155], STD 16, RFC 1212 [RFC1212] and RFC 1215
 [RFC1215]. The second version, called SMIv2, is described in STD
 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC
 2580 [RFC2580].

 o Message protocols for transferring management information. The
 first version of the SNMP message protocol is called SNMPv1 and
 described in STD 15, RFC 1157 [RFC1157]. A second version of the
 SNMP message protocol, which is not an Internet standards track
 protocol, is called SNMPv2c and described in RFC 1901 [RFC1901]
 and RFC 1906 [RFC1906]. The third version of the message protocol
 is called SNMPv3 and described in RFC 1906 [RFC1906], RFC 2572
 [RFC2572] and RFC 2574 [RFC2574].

 o Protocol operations for accessing management information. The
 first set of protocol operations and associated PDU formats is
 described in STD 15, RFC 1157 [RFC1157]. A second set of protocol
 operations and associated PDU formats is described in RFC 1905
 [RFC1905].

 o A set of fundamental applications described in RFC 2573 [RFC2573]
 and the view-based access control mechanism described in RFC 2575
 [RFC2575].

 A more detailed introduction to the current SNMP Management Framework
 can be found in RFC 2570 [RFC2570].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the mechanisms defined in the SMI.

 This memo does not specify a MIB module.

2. Overview

 The RMON-2 MIB [RFC2021] uses hierarchically formatted OCTET STRINGs
 to globally identify individual protocol encapsulations in the
 protocolDirTable.

Bierman, et al. Standards Track [Page 3]

RFC 2895 RMON PI Reference August 2000

 This guide contains algorithms and the authoritative set of base
 layer protocol identifier macros, for use within INDEX values in the
 protocolDirTable.

 This is the second revision of this document, and is intended to
 replace the first half of the first RMON-2 Protocol Identifiers
 document. [RFC2074].

2.1. Terms

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Several terms are used throughout this document, as well as in the
 RMON-2 MIB [RFC2021], that should be introduced:

 parent protocol:
 Also called ’parent’; The encapsulating protocol identifier for
 a specific protocol layer, e.g., IP is the parent protocol of
 UDP. Note that base layers cannot have parent protocols. This
 term may be used to refer to a specific encapsulating protocol,
 or it may be used generically to refer to any encapsulating
 protocol.

 child protocol:
 Also called ’child’; An encapsulated protocol identifier for a
 specific protocol layer. e.g., UDP is a child protocol of IP.
 This term may be used to refer to a specific encapsulated
 protocol, or it may be used generically to refer to any
 encapsulated protocol.

 layer-identifier:
 An octet string fragment representing a particular protocol
 encapsulation layer or sub-layer. A fragment consists of
 exactly four octets, encoded in network byte order. If present,
 child layer-identifiers for a protocol MUST have unique values
 among each other. (See section 3.3 for more details.)

 protocol:
 A particular protocol layer, as specified by encoding rules in
 this document. Usually refers to a single layer in a given
 encapsulation. Note that this term is sometimes used in the
 RMON-2 MIB [RFC2021] to name a fully-specified protocol-
 identifier string. In such a case, the protocol-identifier
 string is named for its upper-most layer. A named protocol may
 also refer to any encapsulation of that protocol.

Bierman, et al. Standards Track [Page 4]

RFC 2895 RMON PI Reference August 2000

 protocol-identifier string:
 An octet string representing a particular protocol
 encapsulation, as specified by the encoding rules in this
 document. This string is identified in the RMON-2 MIB [RFC2021]
 as the protocolDirID object. A protocol-identifier string is
 composed of one or more layer-identifiers read from left to
 right. The left-most layer-identifier specifies a base layer
 encapsulation. Each layer-identifier to the right specifies a
 child layer protocol encapsulation.

 protocol-identifier macro: Also called a PI macro; A macro-like
 textual construct used to describe a particular networking
 protocol. Only protocol attributes which are important for RMON
 use are documented. Note that the term ’macro’ is historical,
 and PI macros are not real macros, nor are they ASN.1 macros.
 The current set of published RMON PI macros can be found in the
 RMON Protocol Identifier Macros document [RFC2896].

 The PI macro serves several purposes:

 - Names the protocol for use within the RMON-2 MIB [RFC2021].
 - Describes how the protocol is encoded into an octet string.
 - Describes how child protocols are identified (if applicable),
 and encoded into an octet string.
 - Describes which protocolDirParameters are allowed for the
 protocol.
 - Describes how the associated protocolDirType object is encoded
 for the protocol.
 - Provides reference(s) to authoritative documentation for the
 protocol.

 protocol-variant-identifier macro:
 Also called a PI-variant macro; A special kind of PI macro, used
 to describe a particular protocol layer, which cannot be
 identified with a deterministic, and (usually) hierarchical
 structure, like most networking protocols.

 Note that the PI-variant macro and the PI-macro are defined with
 a single set of syntax rules (see section 3.2), except that
 different sub-clauses are required for each type.

 A protocol identified with a PI-variant macro is actually a
 variant of a well known encapsulation that may be present in the
 protocolDirTable. This is used to document the IANA assigned
 protocols, which are needed to identify protocols which cannot
 be practically identified by examination of ’appropriate network
 traffic’ (e.g. the packets which carry them). All other
 protocols (which can be identified by examination of appropriate

Bierman, et al. Standards Track [Page 5]

RFC 2895 RMON PI Reference August 2000

 network traffic) SHOULD be documented using the protocol-
 identifier macro. (See section 3.2 for details.)

 protocol-parameter:
 A single octet, corresponding to a specific layer-identifier in
 the protocol-identifier. This octet is a bit-mask indicating
 special functions or capabilities that this agent is providing
 for the corresponding protocol. (See section 3.2.6 for
 details.)

 protocol-parameters string:
 An octet string, which contains one protocol-parameter for each
 layer-identifier in the protocol-identifier. This string is
 identified in the RMON-2 MIB [RFC2021] as the
 protocolDirParameters object. (See the section 3.2.6 for
 details.)

 protocolDirTable INDEX:
 A protocol-identifier and protocol-parameters octet string pair
 that have been converted to an INDEX value, according to the
 encoding rules in section 7.7 of RFC 1902 [RFC1902].

 pseudo-protocol:
 A convention or algorithm used only within this document for the
 purpose of encoding protocol-identifier strings.

 protocol encapsulation tree:
 Protocol encapsulations can be organized into an inverted tree.
 The nodes of the root are the base encapsulations. The children
 nodes, if any, of a node in the tree are the encapsulations of
 child protocols.

2.2. Relationship to the Remote Network Monitoring MIB

 This document is intended to identify the encoding rules for the
 OCTET STRING objects protocolDirID and protocolDirParameters. RMON-2
 tables, such as those in the new Protocol Distribution, Host, and
 Matrix groups, use a local INTEGER INDEX (protocolDirLocalIndex)
 rather than complete protocolDirTable INDEX strings, to identify
 protocols for counting purposes. Only the protocolDirTable uses the
 protocolDirID and protocolDirParameters strings described in this
 document.

 This document is intentionally separated from the RMON-2 MIB objects
 [RFC2021] to allow updates to this document without any republication
 of MIB objects.

Bierman, et al. Standards Track [Page 6]

RFC 2895 RMON PI Reference August 2000

 This document does not discuss auto-discovery and auto-population of
 the protocolDirTable. This functionality is not explicitly defined by
 the RMON standard. An agent SHOULD populate the directory with the
 ’interesting’ protocols on which the intended applications depend.

2.3. Relationship to the RMON Protocol Identifier Macros Document

 The original RMON Protocol Identifiers document [RFC2074] contains
 the protocol directory reference material, as well as many examples
 of protocol identifier macros.

 These macros have been moved to a separate document called the RMON
 Protocol Identifier Macros document [RFC2896]. This will allow the
 normative text (this document) to advance on the standards track with
 the RMON-2 MIB [RFC2021], while the collection of PI macros is
 maintained in an Informational RFC.

 The PI Macros document is intentionally separated from this document
 to allow updates to the list of published PI macros without any
 republication of MIB objects or encoding rules. Protocol Identifier
 macros submitted from the RMON working group and community at large
 (to the RMONMIB WG mailing list at ’rmonmib@ietf.org’) will be
 collected, screened by the RMONMIB working group, and (if approved)
 added to a subsequent version of the PI Macros document.

 Macros submissions will be collected in the IANA’s MIB files under
 the directory "ftp://ftp.isi.edu/mib/rmonmib/rmon2_pi_macros/" and in
 the RMONMIB working group mailing list message archive file
 www.ietf.org/mail-archive/working-
 groups/rmonmib/current/maillist.htm.

2.4. Relationship to the ATM-RMON MIB

 The ATM Forum has standardized "Remote Monitoring MIB Extensions for
 ATM Networks" (ATM-RMON MIB) [AF-NM-TEST-0080.000], which provides
 RMON-like stats, host, matrix, and matrixTopN capability for NSAP
 address-based (ATM Adaption Layer 5, AAL-5) cell traffic.

2.4.1. Port Aggregation

 It it possible to correlate ATM-RMON MIB data with packet-based
 RMON-2 [RFC2021] collections, but only if the ATM-RMON
 ’portSelGrpTable’ and ’portSelTable’ are configured to provide the
 same level of port aggregation as used in the packet-based
 collection. This will require an ATM-RMON ’portSelectGroup’ to
 contain a single port, in the case of traditional RMON dataSources.

Bierman, et al. Standards Track [Page 7]

RFC 2895 RMON PI Reference August 2000

2.4.2. Encapsulation Mappings

 The RMON PI document does not contain explicit PI macro support for
 "Multiprotocol Encapsulation over ATM Adaptation Layer 5" [RFC1483],
 or ATM Forum "LAN Emulation over ATM" (LANE) [AF-LANE-0021.000].
 Instead, a probe must ’fit’ the ATM encapsulation to one of the base
 layers defined in this document (i.e., llc, snap, or vsnap),
 regardless of how the raw data is obtained by the agent (e.g., VC-
 muxing vs. LLC-muxing, or routed vs. bridged formats). See section
 3.2 for details on identifying and decoding a particular base layer.

 An NMS can determine some of the omitted encapsulation details by
 examining the interface type (ifType) of the dataSource for a
 particular RMON collection:

 RFC 1483 dataSource ifTypes:
 - aal5(49)

 LANE dataSource ifTypes:
 - aflane8023(59)
 - aflane8025(60)

 These dataSources require implementation of the ifStackTable from the
 Interfaces MIB [RFC2233]. It is possible that some implementations
 will use dataSource values which indicate an ifType of ’atm(37)’
 (because the ifStackTable is not supported), however this is strongly
 discouraged by the RMONMIB WG.

2.4.3. Counting ATM Traffic in RMON-2 Collections

 The RMON-2 Application Layer (AL) and Network Layer (NL)
 (host/matrix/topN) tables require that octet counters be incremented
 by the size of the particular frame, not by the size of the frame
 attributed to a given protocol.

 Probe implementations must use the AAL-5 frame size (not the AAL-5
 payload size or encapsulated MAC frame size) as the ’frame size’ for
 the purpose of incrementing RMON-2 octet counters (e.g.,
 ’nlHostInOctets’, ’alHostOutOctets’).

 The RMONMIB WG has not addressed issues relating to packet capture of
 AAL-5 based traffic. Therefore, it is an implementation-specific
 matter whether padding octets (i.e., RFC 1483 VC-muxed, bridged 802.3
 or 802.5 traffic, or LANE traffic) are represented in the RMON-1
 ’captureBufferPacketData’ MIB object. Normally, the first octet of
 the captured frame is the first octet of the destination MAC address
 (DA).

Bierman, et al. Standards Track [Page 8]

RFC 2895 RMON PI Reference August 2000

2.5. Relationship to Other MIBs

 The RMON Protocol Identifiers Reference document is intended for use
 with the protocolDirTable within the RMON MIB. It is not relevant to
 any other MIB, or intended for use with any other MIB.

3. Protocol Identifier Encoding

 The protocolDirTable is indexed by two OCTET STRINGs, protocolDirID
 and protocolDirParameters. To encode the table index, each variable-
 length string is converted to an OBJECT IDENTIFIER fragment,
 according to the encoding rules in section 7.7 of RFC 1902 [RFC1902].
 Then the index fragments are simply concatenated. (Refer to figures
 1a - 1d below for more detail.)

 The first OCTET STRING (protocolDirID) is composed of one or more 4-
 octet "layer-identifiers". The entire string uniquely identifies a
 particular node in the protocol encapsulation tree. The second OCTET
 STRING, (protocolDirParameters) which contains a corresponding number
 of 1-octet protocol-specific parameters, one for each 4-octet layer-
 identifier in the first string.

 A protocol layer is normally identified by a single 32-bit value.
 Each layer-identifier is encoded in the ProtocolDirID OCTET STRING
 INDEX as four sub-components [a.b.c.d], where ’a’ - ’d’ represent
 each byte of the 32-bit value in network byte order. If a particular
 protocol layer cannot be encoded into 32 bits, then it must be
 defined as an ’ianaAssigned’ protocol (see below for details on IANA
 assigned protocols).

 The following figures show the differences between the OBJECT
 IDENTIFIER and OCTET STRING encoding of the protocol identifier
 string.

 Fig. 1a
 protocolDirTable INDEX Format

 +---+--------------------------+---+---------------+
c !	c ! protocolDir
n ! protocolDirID	n ! Parameters
t !	t !
 +---+--------------------------+---+---------------+

Bierman, et al. Standards Track [Page 9]

RFC 2895 RMON PI Reference August 2000

 Fig. 1b
 protocolDirTable OCTET STRING Format

 protocolDirID
 +--+
 | |
 | 4 * N octets |
 | |
 +--+

 protocolDirParameters
 +----------+
 | |
 | N octets |
 | |
 +----------+

 N is the number of protocol-layer-identifiers required
 for the entire encapsulation of the named protocol. Note
 that the layer following the base layer usually identifies
 a network layer protocol, but this is not always the case,
 (most notably for children of the ’vsnap’ base-layer).

 Fig. 1c
 protocolDirTable INDEX Format Example

 protocolDirID protocolDirParameters
 +---+--------+--------+--------+--------+---+---+---+---+---+
c	proto	proto	proto	proto	c	par	par	par	par
n	base	L(B+1)	L(B+2)	L(B+3)	n	ba-	L3	L4	L5
t	(+flags)	L3	L4	L5	t	se			
+---+--------+--------+--------+--------+---+---+---+---+---+ subOID									
1	4	4	4	4	1	1	1	1	1

 When encoded in a protocolDirTable INDEX, each of the two
 strings must be preceded by a length sub-component. In this
 example, N equals ’4’, the first ’cnt’ field would contain
 the value ’16’, and the second ’cnt’ field would contain
 the value ’4’.

Bierman, et al. Standards Track [Page 10]

RFC 2895 RMON PI Reference August 2000

 Fig. 1d
 protocolDirTable OCTET STRING Format Example
 --

 protocolDirID
 +--------+--------+--------+--------+
proto	proto	proto	proto
base	L3	L4	L5
+--------+--------+--------+--------+ octet			
4	4	4	4

 protocolDirParameters
 +---+---+---+---+
par	par	par	par
ba-	L3	L4	L5
se			
+---+---+---+---+ octet			
1	1	1	1

 Although this example indicates four encapsulated protocols, in
 practice, any non-zero number of layer-identifiers may be present,
 theoretically limited only by OBJECT IDENTIFIER length restrictions,
 as specified in section 3.5 of RFC 1902 [RFC1902].

3.1. ProtocolDirTable INDEX Format Examples

 The following PI identifier fragments are examples of some fully
 encoded protocolDirTable INDEX values for various encapsulations.

 -- HTTP; fragments counted from IP and above
 ether2.ip.tcp.www-http =
 16.0.0.0.1.0.0.8.0.0.0.0.6.0.0.0.80.4.0.1.0.0

 -- SNMP over UDP/IP over SNAP
 snap.ip.udp.snmp =
 16.0.0.0.3.0.0.8.0.0.0.0.17.0.0.0.161.4.0.0.0.0

 -- SNMP over IPX over SNAP
 snap.ipx.snmp =
 12.0.0.0.3.0.0.129.55.0.0.144.15.3.0.0.0

 -- SNMP over IPX over raw8023
 ianaAssigned.ipxOverRaw8023.snmp =
 12.0.0.0.5.0.0.0.1.0.0.144.15.3.0.0.0

Bierman, et al. Standards Track [Page 11]

RFC 2895 RMON PI Reference August 2000

 -- IPX over LLC
 llc.ipx =
 8.0.0.0.2.0.0.0.224.2.0.0

 -- SNMP over UDP/IP over any link layer
 ether2.ip.udp.snmp
 16.1.0.0.1.0.0.8.0.0.0.0.17.0.0.0.161.4.0.0.0.0

 -- IP over any link layer; base encoding is IP over ether2
 ether2.ip
 8.1.0.0.1.0.0.8.0.2.0.0

 -- AppleTalk Phase 2 over ether2
 ether2.atalk
 8.0.0.0.1.0.0.128.155.2.0.0

 -- AppleTalk Phase 2 over vsnap
 vsnap.apple-oui.atalk
 12.0.0.0.4.0.8.0.7.0.0.128.155.3.0.0.0

3.2. Protocol Identifier Macro Format

 The following example is meant to introduce the protocol-identifier
 macro. This macro-like construct is used to represent both protocols
 and protocol-variants.

 If the ’VariantOfPart’ component of the macro is present, then the
 macro represents a protocol-variant instead of a protocol. This
 clause is currently used only for IANA assigned protocols, enumerated
 under the ’ianaAssigned’ base-layer. The VariantOfPart component
 MUST be present for IANA assigned protocols.

3.2.1. Lexical Conventions

 The PI language defines the following keywords:

 ADDRESS-FORMAT
 ATTRIBUTES
 CHILDREN
 DECODING
 DESCRIPTION
 PARAMETERS
 PROTOCOL-IDENTIFIER
 REFERENCE
 VARIANT-OF

Bierman, et al. Standards Track [Page 12]

RFC 2895 RMON PI Reference August 2000

 The PI language defines the following punctuation elements:

 { left curly brace
 } right curly brace
 (left parenthesis
) right parenthesis
 , comma
 ::= two colons and an equal sign
 -- two dashes

3.2.2. Notation for Syntax Descriptions

 An extended form of the BNF notation is used to specify the syntax of
 the PI language. The rules for this notation are shown below:

 * Literal values are specified in quotes, for example "REFERENCE"

 * Non-terminal items are surrounded by less than (<) and greater
 than (>) characters, for example <parmList>

 * Terminal items are specified without surrounding quotes or less
 than and greater than characters, for example ’lcname’

 * A vertical bar (|) is used to indicate a choice between items,
 for example ’number | hstr’

 * Ellipsis are used to indicate that the previous item may be
 repeated one or more times, for example <parm>...

 * Square brackets are used to enclose optional items, for example
 ["," <parm>]

 * An equals character (=) is used to mean "defined as," for
 example ’<protoName> = pname’

3.2.3. Grammar for the PI Language

 The following are "terminals" of the grammar and are identical to the
 same lexical elements from the MIB module language, except for hstr
 and pname:

 <lc> = "a" | "b" | "c" | ... | "z"
 <uc> = "A" | "B" | "C" | ... | "Z"
 <letter> = <lc> | <uc>
 <digit> = "0" | "1" | ... | "9"
 <hdigit> = <digit> | "a" | "A" | "b" | "B" | ... | "f" | "F"

Bierman, et al. Standards Track [Page 13]

RFC 2895 RMON PI Reference August 2000

 <lcname> = <lc> [<lcrest>]
 <lcrest> = (<letter> | <digit> | "-") [<lcrest>]

 <pname> = (<letter> | <digit>) [<pnrest>]
 <pnrest> = (<letter> | <digit> | "-" | "_" | "*") [<pnrest>]

 <number> = <digit> [<number>] -- to a max dec. value of 4g-1

 <hstr> = "0x" <hrest> -- to a max dec. value of 4g-1
 <hrest> = <hdigit> [<hrest>]

 <lf> = linefeed char
 <cr> = carriage return char
 <eoln> = <cr><lf> | <lf>

 <sp> = " "
 <tab> = " "
 <wspace> = { <sp> | <tab> | <eoln> } [<wspace>]

 <string> = """ [<strest>] """
 <strest> = (<letter> | <digit> | <wspace>) [<strest>]

 The following is the extended BNF notation for the grammar with
 starting symbol <piFile>:

 -- a file containing one or more Protocol Identifier (PI)
 -- definitions
 <piFile> = <piDefinition>...

 -- a PI definition
 <piDefinition> =
 <protoName> "PROTOCOL-IDENTIFIER"
 ["VARIANT-OF" <protoName>]
 "PARAMETERS" "{" [<parmList>] "}"
 "ATTRIBUTES" "{" [<attrList>] "}"
 "DESCRIPTION" string
 ["CHILDREN" string]
 ["ADDRESS-FORMAT" string]
 ["DECODING" string]
 ["REFERENCE" string]
 "::=" "{" <encapList> "}"

 -- a protocol name
 <protoName> = pname

 -- a list of parameters
 <parmList> = <parm> ["," <parm>]...

Bierman, et al. Standards Track [Page 14]

RFC 2895 RMON PI Reference August 2000

 -- a parameter
 <parm> = lcname [<wspace>] "(" [<wspace>]
 <nonNegNum> [<wspace>] ")" [<wspace>]

 -- list of attributes
 <attrList> = <attr> [[<wspace>] "," [<wspace>] <attr>]...

 -- an attribute
 <attr> = lcname [<wspace>] "(" [<wspace>]
 <nonNegNum> [<wspace>] ")"

 -- a non-negative number
 <nonNegNum> = number | hstr

 -- list of encapsulation values
 <encapList> = <encapValue> [[<wspace>] ","
 [<wspace>] <encapValue>]...

 -- an encapsulation value
 <encapValue> = <baseEncapValue> | <normalEncapValue>

 -- base encapsulation value
 <baseEncapValue> = <nonNegNum>

 -- normal encapsulation value
 <normalEncapValue> = <protoName> <wspace> <nonNegNum>

 -- comment
 <two dashes> <text> <end-of-line>

3.2.4. Mapping of the Protocol Name

 The "protoName" value, called the "protocol name" shall be an ASCII
 string consisting of one up to 64 characters from the following:

 "A" through "Z"
 "a" through "z"
 "0" through "9"
 dash (-)
 underbar (_)
 asterisk (*)
 plus(+)

 The first character of the protocol name is limited to one of the
 following:

 "A" through "Z"
 "a" through "z"

Bierman, et al. Standards Track [Page 15]

RFC 2895 RMON PI Reference August 2000

 "0" through "9"

 This value SHOULD be the name or acronym identifying the protocol.
 Note that case is significant. The value selected for the protocol
 name SHOULD match the "most well-known" name or acronym for the
 indicated protocol. For example, the document indicated by the URL:

 ftp://ftp.isi.edu/in-notes/iana/assignments/protocol-numbers

 defines IP Protocol field values, so protocol-identifier macros for
 children of IP SHOULD be given names consistent with the protocol
 names found in this authoritative document. Likewise, children of
 UDP and TCP SHOULD be given names consistent with the port number
 name assignments found in:

 ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers

 When the "well-known name" contains characters not allowed in
 protocol names, they MUST be changed to a dash character ("-") . In
 the event that the first character must be changed, the protocol name
 is prepended with the letter "p", so the former first letter may be
 changed to a dash.

 For example, z39.50 becomes z39-50 and 914c/g becomes 914c-g. The
 following protocol names are legal:

 ftp, ftp-data, whois++, sql*net, 3com-tsmux, ocs_cmu

 Note that it is possible in actual implementation that different
 encapsulations of the same protocol (which are represented by
 different entries in the protocolDirTable) will be assigned the same
 protocol name. The protocolDirID INDEX value defines a particular
 protocol, not the protocol name string.

3.2.5. Mapping of the VARIANT-OF Clause

 This clause is present for IANA assigned protocols only. It
 identifies the protocol-identifier macro that most closely represents
 this particular protocol, and is known as the "reference protocol".
 A protocol-identifier macro MUST exist for the reference protocol.
 When this clause is present in a protocol-identifier macro, the macro
 is called a ’protocol-variant-identifier’.

 Any clause (e.g. CHILDREN, ADDRESS-FORMAT) in the reference
 protocol-identifier macro SHOULD NOT be duplicated in the protocol-
 variant-identifier macro, if the ’variant’ protocols’ semantics are
 identical for a given clause.

Bierman, et al. Standards Track [Page 16]

RFC 2895 RMON PI Reference August 2000

 Since the PARAMETERS and ATTRIBUTES clauses MUST be present in a
 protocol-identifier, an empty ’ParamList’ and ’AttrList’ (i.e.
 "PARAMETERS {}") MUST be present in a protocol-variant-identifier
 macro, and the ’ParamList’ and ’AttrList’ found in the reference
 protocol-identifier macro examined instead.

 Note that if an ’ianaAssigned’ protocol is defined that is not a
 variant of any other documented protocol, then the protocol-
 identifier macro SHOULD be used instead of the protocol-variant-
 identifier version of the macro.

3.2.6. Mapping of the PARAMETERS Clause

 The protocolDirParameters object provides an NMS the ability to turn
 on and off expensive probe resources. An agent may support a given
 parameter all the time, not at all, or subject to current resource
 load.

 The PARAMETERS clause is a list of bit definitions which can be
 directly encoded into the associated ProtocolDirParameters octet in
 network byte order. Zero or more bit definitions may be present. Only
 bits 0-7 are valid encoding values. This clause defines the entire
 BIT set allowed for a given protocol. A conforming agent may choose
 to implement a subset of zero or more of these PARAMETERS.

 By convention, the following common bit definitions are used by
 different protocols. These bit positions MUST NOT be used for other
 parameters. They MUST be reserved if not used by a given protocol.

 Bits are encoded in a single octet. Bit 0 is the high order (left-
 most) bit in the octet, and bit 7 is the low order (right-most) bit
 in the first octet. Reserved bits and unspecified bits in the octet
 are set to zero.

 Table 3.1 Reserved PARAMETERS Bits

 Bit Name Description

 0 countsFragments higher-layer protocols encapsulated within
 this protocol will be counted correctly even
 if this protocol fragments the upper layers
 into multiple packets.
 1 tracksSessions correctly attributes all packets of a protocol
 which starts sessions on well known ports or
 sockets and then transfers them to dynamically
 assigned ports or sockets thereafter (e.g. TFTP).

Bierman, et al. Standards Track [Page 17]

RFC 2895 RMON PI Reference August 2000

 The PARAMETERS clause MUST be present in all protocol-identifier
 macro declarations, but may be equal to zero (empty).

3.2.6.1. Mapping of the ’countsFragments(0)’ BIT

 This bit indicates whether the probe is correctly attributing all
 fragmented packets of the specified protocol, even if individual
 frames carrying this protocol cannot be identified as such. Note
 that the probe is not required to actually present any re-assembled
 datagrams (for address-analysis, filtering, or any other purpose) to
 the NMS.

 This bit MUST only be set in a protocolDirParameters octet which
 corresponds to a protocol that supports fragmentation and reassembly
 in some form. Note that TCP packets are not considered ’fragmented-
 streams’ and so TCP is not eligible.

 This bit MAY be set in more than one protocolDirParameters octet
 within a protocolDirTable INDEX, in the event an agent can count
 fragments at more than one protocol layer.

3.2.6.2. Mapping of the ’tracksSessions(1)’ BIT

 The ’tracksSessions(1)’ bit indicates whether frames which are part
 of remapped sessions (e.g. TFTP download sessions) are correctly
 counted by the probe. For such a protocol, the probe must usually
 analyze all packets received on the indicated interface, and maintain
 some state information, (e.g. the remapped UDP port number for TFTP).

 The semantics of the ’tracksSessions’ parameter are independent of
 the other protocolDirParameters definitions, so this parameter MAY be
 combined with any other legal parameter configurations.

3.2.7. Mapping of the ATTRIBUTES Clause

 The protocolDirType object provides an NMS with an indication of a
 probe’s capabilities for decoding a given protocol, or the general
 attributes of the particular protocol.

 The ATTRIBUTES clause is a list of bit definitions which are encoded
 into the associated instance of ProtocolDirType. The BIT definitions
 are specified in the SYNTAX clause of the protocolDirType MIB object.

Bierman, et al. Standards Track [Page 18]

RFC 2895 RMON PI Reference August 2000

 Table 3.2 Reserved ATTRIBUTES Bits

 Bit Name Description

 0 hasChildren indicates that there may be children of
 this protocol defined in the protocolDirTable
 (by either the agent or the manager).
 1 addressRecognitionCapable
 indicates that this protocol can be used
 to generate host and matrix table entries.

 The ATTRIBUTES clause MUST be present in all protocol-identifier
 macro declarations, but MAY be empty.

3.2.8. Mapping of the DESCRIPTION Clause

 The DESCRIPTION clause provides a textual description of the protocol
 identified by this macro. Notice that it SHOULD NOT contain details
 about items covered by the CHILDREN, ADDRESS-FORMAT, DECODING and
 REFERENCE clauses.

 The DESCRIPTION clause MUST be present in all protocol-identifier
 macro declarations.

3.2.9. Mapping of the CHILDREN Clause

 The CHILDREN clause provides a description of child protocols for
 protocols which support them. It has three sub-sections:

 - Details on the field(s)/value(s) used to select the child protocol,
 and how that selection process is performed

 - Details on how the value(s) are encoded in the protocol identifier
 octet string

 - Details on how child protocols are named with respect to their
 parent protocol label(s)

 The CHILDREN clause MUST be present in all protocol-identifier macro
 declarations in which the ’hasChildren(0)’ BIT is set in the
 ATTRIBUTES clause.

Bierman, et al. Standards Track [Page 19]

RFC 2895 RMON PI Reference August 2000

3.2.10. Mapping of the ADDRESS-FORMAT Clause

 The ADDRESS-FORMAT clause provides a description of the OCTET-STRING
 format(s) used when encoding addresses.

 This clause MUST be present in all protocol-identifier macro
 declarations in which the ’addressRecognitionCapable(1)’ BIT is set
 in the ATTRIBUTES clause.

3.2.11. Mapping of the DECODING Clause

 The DECODING clause provides a description of the decoding procedure
 for the specified protocol. It contains useful decoding hints for the
 implementor, but SHOULD NOT over-replicate information in documents
 cited in the REFERENCE clause. It might contain a complete
 description of any decoding information required.

 For ’extensible’ protocols (’hasChildren(0)’ BIT set) this includes
 offset and type information for the field(s) used for child selection
 as well as information on determining the start of the child
 protocol.

 For ’addressRecognitionCapable’ protocols this includes offset and
 type information for the field(s) used to generate addresses.

 The DECODING clause is optional, and MAY be omitted if the REFERENCE
 clause contains pointers to decoding information for the specified
 protocol.

3.2.12. Mapping of the REFERENCE Clause

 If a publicly available reference document exists for this protocol
 it SHOULD be listed here. Typically this will be a URL if possible;
 if not then it will be the name and address of the controlling body.

 The CHILDREN, ADDRESS-FORMAT, and DECODING clauses SHOULD limit the
 amount of information which may currently be obtained from an
 authoritative document, such as the Assigned Numbers document
 [RFC1700]. Any duplication or paraphrasing of information should be
 brief and consistent with the authoritative document.

 The REFERENCE clause is optional, but SHOULD be implemented if an
 authoritative reference exists for the protocol (especially for
 standard protocols).

Bierman, et al. Standards Track [Page 20]

RFC 2895 RMON PI Reference August 2000

3.3. Evaluating an Index of the ProtocolDirTable

 The following evaluation is done after a protocolDirTable INDEX value
 has been converted into two OCTET STRINGs according to the INDEX
 encoding rules specified in the SMI [RFC1902].

 Protocol-identifiers are evaluated left to right, starting with the
 protocolDirID, which length MUST be evenly divisible by four. The
 protocolDirParameters length MUST be exactly one quarter of the
 protocolDirID string length.

 Protocol-identifier parsing starts with the base layer identifier,
 which MUST be present, and continues for one or more upper layer
 identifiers, until all OCTETs of the protocolDirID have been used.
 Layers MUST NOT be skipped, so identifiers such as ’SNMP over IP’ or
 ’TCP over ether2’ can not exist.

 The base-layer-identifier also contains a ’special function
 identifier’ which may apply to the rest of the protocol identifier.

 Wild-carding at the base layer within a protocol encapsulation is the
 only supported special function at this time. (See section 4.1.1.2
 for details.)

 After the protocol-identifier string (which is the value of
 protocolDirID) has been parsed, each octet of the protocol-parameters
 string is evaluated, and applied to the corresponding protocol layer.

 A protocol-identifier label MAY map to more than one value. For
 instance, ’ip’ maps to 5 distinct values, one for each supported
 encapsulation. (see the ’IP’ section under ’L3 Protocol Identifiers’
 in the RMON Protocol Identifier Macros document [RFC2896]).

 It is important to note that these macros are conceptually expanded
 at implementation time, not at run time.

 If all the macros are expanded completely by substituting all
 possible values of each label for each child protocol, a list of all
 possible protocol-identifiers is produced. So ’ip’ would result in 5
 distinct protocol-identifiers. Likewise each child of ’ip’ would map
 to at least 5 protocol-identifiers, one for each encapsulation (e.g.
 ip over ether2, ip over LLC, etc.).

Bierman, et al. Standards Track [Page 21]

RFC 2895 RMON PI Reference August 2000

4. Base Layer Protocol Identifier Macros

 The following PROTOCOL IDENTIFIER macros can be used to construct
 protocolDirID and protocolDirParameters strings.

 An identifier is encoded by constructing the base-identifier, then
 adding one layer-identifier for each encapsulated protocol.

 Refer to the RMON Protocol Identifier Macros document [RFC2896] for a
 listing of the non-base layer PI macros published by the working
 group. Note that other PI macro documents may exist, and it should be
 possible for an implementor to populate the protocolDirTable without
 the use of the PI Macro document [RFC2896].

4.1. Base Identifier Encoding

 The first layer encapsulation is called the base identifier and it
 contains optional protocol-function information and the base layer
 (e.g. MAC layer) enumeration value used in this protocol identifier.

 The base identifier is encoded as four octets as shown in figure 2.

 Fig. 2
 base-identifier format
 +---+---+---+---+
 | | | | |
 | f |op1|op2| m |
 | | | | |
 +---+---+---+---+ octet
 | 1 | 1 | 1 | 1 | count

 The first octet (’f’) is the special function code, found in table
 4.1. The next two octets (’op1’ and ’op2’) are operands for the
 indicated function. If not used, an operand must be set to zero. The
 last octet, ’m’, is the enumerated value for a particular base layer
 encapsulation, found in table 4.2. All four octets are encoded in
 network-byte-order.

4.1.1. Protocol Identifier Functions

 The base layer identifier contains information about any special
 functions to perform during collections of this protocol, as well as
 the base layer encapsulation identifier.

 The first three octets of the identifier contain the function code
 and two optional operands. The fourth octet contains the particular
 base layer encapsulation used in this protocol (fig. 2).

Bierman, et al. Standards Track [Page 22]

RFC 2895 RMON PI Reference August 2000

 Table 4.1 Assigned Protocol Identifier Functions

 Function ID Param1 Param2
 --
 none 0 not used (0) not used (0)
 wildcard 1 not used (0) not used (0)

4.1.1.1. Function 0: None

 If the function ID field (1st octet) is equal to zero, the ’op1’ and
 ’op2’ fields (2nd and 3rd octets) must also be equal to zero. This
 special value indicates that no functions are applied to the protocol
 identifier encoded in the remaining octets. The identifier represents
 a normal protocol encapsulation.

4.1.1.2. Function 1: Protocol Wildcard Function

 The wildcard function (function-ID = 1), is used to aggregate
 counters, by using a single protocol value to indicate potentially
 many base layer encapsulations of a particular network layer
 protocol. A protocolDirEntry of this type will match any base-layer
 encapsulation of the same network layer protocol.

 The ’op1’ field (2nd octet) is not used and MUST be set to zero.

 The ’op2’ field (3rd octet) is not used and MUST be set to zero.

 Each wildcard protocol identifier MUST be defined in terms of a ’base
 encapsulation’. This SHOULD be as ’standard’ as possible for
 interoperability purposes. The lowest possible base layer value
 SHOULD be chosen. So, if an encapsulation over ’ether2’ is
 permitted, than this should be used as the base encapsulation. If not
 then an encapsulation over LLC should be used, if permitted. And so
 on for each of the defined base layers.

 It should be noted that an agent does not have to support the non-
 wildcard protocol identifier over the same base layer. For instance
 a token ring only device would not normally support IP over the
 ether2 base layer. Nevertheless it should use the ether2 base layer
 for defining the wildcard IP encapsulation. The agent MAY also
 support counting some or all of the individual encapsulations for the
 same protocols, in addition to wildcard counting. Note that the
 RMON-2 MIB [RFC2021] does not require that agents maintain counters
 for multiple encapsulations of the same protocol. It is an
 implementation-specific matter as to how an agent determines which
 protocol combinations to allow in the protocolDirTable at any given
 time.

Bierman, et al. Standards Track [Page 23]

RFC 2895 RMON PI Reference August 2000

4.2. Base Layer Protocol Identifiers

 The base layer is mandatory, and defines the base encapsulation of
 the packet and any special functions for this identifier.

 There are no suggested protocolDirParameters bits for the base layer.

 The suggested value for the ProtocolDirDescr field for the base layer
 is given by the corresponding "Name" field in the table 4.2 below.
 However, implementations are only required to use the appropriate
 integer identifier values.

 For most base layer protocols, the protocolDirType field should
 contain bits set for the ’hasChildren(0)’ and ’
 addressRecognitionCapable(1)’ attributes. However, the special
 ’ianaAssigned’ base layer should have no parameter or attribute bits
 set.

 By design, only 255 different base layer encapsulations are
 supported. There are five base encapsulation values defined at this
 time. Very few new base encapsulations (e.g. for new media types) are
 expected to be added over time.

 Table 4.2 Base Layer Encoding Values

 Name ID

 ether2 1
 llc 2
 snap 3
 vsnap 4
 ianaAssigned 5

 -- Ether2 Encapsulation

ether2 PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0),
 addressRecognitionCapable(1)
 }
 DESCRIPTION
 "DIX Ethernet, also called Ethernet-II."
 CHILDREN
 "The Ethernet-II type field is used to select child protocols.
 This is a 16-bit field. Child protocols are deemed to start at
 the first octet after this type field.

Bierman, et al. Standards Track [Page 24]

RFC 2895 RMON PI Reference August 2000

 Children of this protocol are encoded as [0.0.0.1], the
 protocol identifier for ’ether2’ followed by [0.0.a.b] where
 ’a’ and ’b’ are the network byte order encodings of the high
 order byte and low order byte of the Ethernet-II type value.

 For example, a protocolDirID-fragment value of:
 0.0.0.1.0.0.8.0 defines IP encapsulated in ether2.

 Children of ether2 are named as ’ether2’ followed by the type
 field value in hexadecimal. The above example would be declared
 as:
 ether2 0x0800"
 ADDRESS-FORMAT
 "Ethernet addresses are 6 octets in network order."
 DECODING
 "Only type values greater than 1500 decimal indicate Ethernet-II
 frames; lower values indicate 802.3 encapsulation (see below)."
 REFERENCE
 "The authoritative list of Ether Type values is identified by the
 URL:

 ftp://ftp.isi.edu/in-notes/iana/assignments/ethernet-numbers"
 ::= { 1 }

 -- LLC Encapsulation

llc PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0),
 addressRecognitionCapable(1)
 }
 DESCRIPTION
 "The Logical Link Control (LLC) 802.2 protocol."
 CHILDREN
 "The LLC Source Service Access Point (SSAP) and Destination
 Service Access Point (DSAP) are used to select child protocols.
 Each of these is one octet long, although the least significant
 bit is a control bit and should be masked out in most situations.
 Typically SSAP and DSAP (once masked) are the same for a given
 protocol - each end implicitly knows whether it is the server or
 client in a client/server protocol. This is only a convention,
 however, and it is possible for them to be different. The SSAP
 is matched against child protocols first. If none is found then
 the DSAP is matched instead. The child protocol is deemed to
 start at the first octet after the LLC control field(s).

Bierman, et al. Standards Track [Page 25]

RFC 2895 RMON PI Reference August 2000

 Children of ’llc’ are encoded as [0.0.0.2], the protocol
 identifier component for LLC followed by [0.0.0.a] where ’a’ is
 the SAP value which maps to the child protocol. For example, a
 protocolDirID-fragment value of:
 0.0.0.2.0.0.0.240

 defines NetBios over LLC.

 Children are named as ’llc’ followed by the SAP value in
 hexadecimal. So the above example would have been named:
 llc 0xf0"
 ADDRESS-FORMAT
 "The address consists of 6 octets of MAC address in network
 order. Source routing bits should be stripped out of the address
 if present."
 DECODING
 "Notice that LLC has a variable length protocol header; there are
 always three octets (DSAP, SSAP, control). Depending on the
 value of the control bits in the DSAP, SSAP and control fields
 there may be an additional octet of control information.

 LLC can be present on several different media. For 802.3 and
 802.5 its presence is mandated (but see ether2 and raw 802.3
 encapsulations). For 802.5 there is no other link layer
 protocol.

 Notice also that the raw802.3 link layer protocol may take
 precedence over this one in a protocol specific manner such that
 it may not be possible to utilize all LSAP values if raw802.3 is
 also present."
 REFERENCE
 "The authoritative list of LLC LSAP values is controlled by the
 IEEE Registration Authority:
 IEEE Registration Authority
 c/o Iris Ringel
 IEEE Standards Dept
 445 Hoes Lane, P.O. Box 1331
 Piscataway, NJ 08855-1331
 Phone +1 908 562 3813
 Fax: +1 908 562 1571"
 ::= { 2 }

 -- SNAP over LLC (Organizationally Unique Identifier, OUI=000)
 -- Encapsulation

snap PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {

Bierman, et al. Standards Track [Page 26]

RFC 2895 RMON PI Reference August 2000

 hasChildren(0),
 addressRecognitionCapable(1)
 }
 DESCRIPTION
 "The Sub-Network Access Protocol (SNAP) is layered on top of LLC
 protocol, allowing Ethernet-II protocols to be run over a media
 restricted to LLC."
 CHILDREN
 "Children of ’snap’ are identified by Ethernet-II type values;
 the SNAP Protocol Identifier field (PID) is used to select the
 appropriate child. The entire SNAP protocol header is consumed;
 the child protocol is assumed to start at the next octet after
 the PID.

 Children of ’snap’ are encoded as [0.0.0.3], the protocol
 identifier for ’snap’, followed by [0.0.a.b] where ’a’ and ’b’
 are the high order byte and low order byte of the Ethernet-II
 type value.

 For example, a protocolDirID-fragment value of:
 0.0.0.3.0.0.8.0

 defines the IP/SNAP protocol.

 Children of this protocol are named ’snap’ followed by the
 Ethernet-II type value in hexadecimal. The above example would
 be named:

 snap 0x0800"
 ADDRESS-FORMAT
 "The address format for SNAP is the same as that for LLC"
 DECODING
 "SNAP is only present over LLC. Both SSAP and DSAP will be 0xAA
 and a single control octet will be present. There are then three
 octets of Organizationally Unique Identifier (OUI) and two octets
 of PID. For this encapsulation the OUI must be 0x000000 (see
 ’vsnap’ below for non-zero OUIs)."
 REFERENCE
 "SNAP Identifier values are assigned by the IEEE Standards
 Office. The address is:
 IEEE Registration Authority
 c/o Iris Ringel
 IEEE Standards Dept
 445 Hoes Lane, P.O. Box 1331
 Piscataway, NJ 08855-1331
 Phone +1 908 562 3813
 Fax: +1 908 562 1571"
 ::= { 3 }

Bierman, et al. Standards Track [Page 27]

RFC 2895 RMON PI Reference August 2000

 -- Vendor SNAP over LLC (OUI != 000) Encapsulation

vsnap PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0),
 addressRecognitionCapable(1)
 }
 DESCRIPTION
 "This pseudo-protocol handles all SNAP packets which do not have
 a zero OUI. See ’snap’ above for details of those that have a
 zero OUI value."
 CHILDREN
 "Children of ’vsnap’ are selected by the 3 octet OUI; the PID is
 not parsed; child protocols are deemed to start with the first
 octet of the SNAP PID field, and continue to the end of the
 packet. Children of ’vsnap’ are encoded as [0.0.0.4], the
 protocol identifier for ’vsnap’, followed by [0.a.b.c] where
 ’a’, ’b’ and ’c’ are the 3 octets of the OUI field in network
 byte order.

 For example, a protocolDirID-fragment value of:
 0.0.0.4.0.8.0.7 defines the Apple-specific set of protocols
 over vsnap.

 Children are named as ’vsnap <OUI>’, where the ’<OUI>’ field is
 represented as 3 octets in hexadecimal notation.

 So the above example would be named:
 ’vsnap 0x080007’"
 ADDRESS-FORMAT
 "The LLC address format is inherited by ’vsnap’. See the ’llc’
 protocol identifier for more details."
 DECODING
 "Same as for ’snap’ except the OUI is non-zero and the SNAP
 Protocol Identifier is not parsed."
 REFERENCE
 "SNAP Identifier values are assigned by the IEEE Standards
 Office. The address is:
 IEEE Registration Authority
 c/o Iris Ringel
 IEEE Standards Dept
 445 Hoes Lane, P.O. Box 1331
 Piscataway, NJ 08855-1331
 Phone +1 908 562 3813
 Fax: +1 908 562 1571"
 ::= { 4 }

Bierman, et al. Standards Track [Page 28]

RFC 2895 RMON PI Reference August 2000

 -- IANA Assigned Protocols

ianaAssigned PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "This branch contains protocols which do not conform easily to
 the hierarchical format utilized in the other link layer
 branches. Usually, such a protocol ’almost’ conforms to a
 particular ’well-known’ identifier format, but additional
 criteria are used (e.g. configuration-based), making protocol
 identification difficult or impossible by examination of
 appropriate network traffic (preventing the any ’well-known’
 protocol-identifier macro from being used).

 Sometimes well-known protocols are simply remapped to a different
 port number by one or more venders (e.g. SNMP). These protocols
 can be identified with the ’limited extensibility’ feature of the
 protocolDirTable, and do not need special IANA assignments.

 A centrally located list of these enumerated protocols must be
 maintained by IANA to insure interoperability. (See section 2.3
 for details on the document update procedure.) Support for new
 link-layers will be added explicitly, and only protocols which
 cannot possibly be represented in a better way will be considered
 as ’ianaAssigned’ protocols.

 IANA protocols are identified by the base-layer-selector value [
 0.0.0.5], followed by the four octets [0.0.a.b] of the integer
 value corresponding to the particular IANA protocol.

 Do not create children of this protocol unless you are sure that
 they cannot be handled by the more conventional link layers
 above."
 CHILDREN
 "Children of this protocol are identified by implementation-
 specific means, described (as best as possible) in the ’DECODING’
 clause within the protocol-variant-identifier macro for each
 enumerated protocol.

 Children of this protocol are encoded as [0.0.0.5], the
 protocol identifier for ’ianaAssigned’, followed by [0.0.a.b]
 where ’a’, ’b’ are the network byte order encodings of the high
 order byte and low order byte of the enumeration value for the
 particular IANA assigned protocol.

Bierman, et al. Standards Track [Page 29]

RFC 2895 RMON PI Reference August 2000

 For example, a protocolDirID-fragment value of:
 0.0.0.5.0.0.0.1

 defines the IPX protocol encapsulated directly in 802.3

 Children are named ’ianaAssigned’ followed by the numeric value
 of the particular IANA assigned protocol. The above example
 would be named:

 ’ianaAssigned 1’ "
 DECODING
 "The ’ianaAssigned’ base layer is a pseudo-protocol and is not
 decoded."
 REFERENCE
 "Refer to individual PROTOCOL-IDENTIFIER macros for information
 on each child of the IANA assigned protocol."
 ::= { 5 }

 -- The following protocol-variant-identifier macro declarations are
 -- used to identify the RMONMIB IANA assigned protocols in a
 -- proprietary way, by simple enumeration.

ipxOverRaw8023 PROTOCOL-IDENTIFIER
 VARIANT-OF ipx
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "This pseudo-protocol describes an encapsulation of IPX over
 802.3, without a type field.

 Refer to the macro for IPX for additional information about this
 protocol."
 DECODING
 "Whenever the 802.3 header indicates LLC a set of protocol
 specific tests needs to be applied to determine whether this is a
 ’raw8023’ packet or a true 802.2 packet. The nature of these
 tests depends on the active child protocols for ’raw8023’ and is
 beyond the scope of this document."
 ::= {
 ianaAssigned 1, -- [0.0.0.1]
 802-1Q 0x05000001 -- 1Q_IANA [5.0.0.1]
 }

Bierman, et al. Standards Track [Page 30]

RFC 2895 RMON PI Reference August 2000

4.3. Encapsulation Layers

 Encapsulation layers are positioned between the base layer and the
 network layer. It is an implementation-specific matter whether a
 probe exposes all such encapsulations in its RMON-2 Protocol
 Directory.

4.3.1. IEEE 802.1Q

 RMON probes may encounter ’VLAN tagged’ frames on monitored links.
 The IEEE Virtual LAN (VLAN) encapsulation standards [IEEE802.1Q] and
 [IEEE802.1D-1998], define an encapsulation layer inserted after the
 MAC layer and before the network layer. This section defines a PI
 macro which supports most (but not all) features of that
 encapsulation layer.

 Most notably, the RMON PI macro ’802-1Q’ does not expose the Token
 Ring Encapsulation (TR-encaps) bit in the TCI portion of the VLAN
 header. It is an implementation specific matter whether an RMON
 probe converts LLC-Token Ring (LLC-TR) formatted frames to LLC-Native
 (LLC-N) format, for the purpose of RMON collection.

 In order to support the Ethernet and LLC-N formats in the most
 efficient manner, and still maintain alignment with the RMON-2 ’
 collapsed’ base layer approach (i.e., support for snap and vsnap),
 the children of 802dot1Q are encoded a little differently than the
 children of other base layer identifiers.

802-1Q PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0)
 }
 DESCRIPTION
 "IEEE 802.1Q VLAN Encapsulation header.

 Note that the specific encoding of the TPID field is not
 explicitly identified by this PI macro. Ethernet-encoded vs.
 SNAP-encoded TPID fields can be identified by the ifType of the
 data source for a particular RMON collection, since the SNAP-
 encoded format is used exclusively on Token Ring and FDDI media.
 Also, no information held in the TCI field (including the TR-
 encap bit) is identified in protocolDirID strings utilizing this
 PI macro."

Bierman, et al. Standards Track [Page 31]

RFC 2895 RMON PI Reference August 2000

 CHILDREN
 "The first byte of the 4-byte child identifier is used to
 distinguish the particular base encoding that follows the 802.1Q
 header. The remaining three bytes are used exactly as defined by
 the indicated base layer encoding.

 In order to simplify the child encoding for the most common
 cases, the ’ether2’ and ’snap’ base layers are combined into a
 single identifier, with a value of zero. The other base layers
 are encoded with values taken from Table 4.2.

 802-1Q Base ID Values

 Base Table 4.2 Base-ID
 Layer Encoding Encoding

 ether2 1 0
 llc 2 2
 snap 3 0
 vsnap 4 4
 ianaAssigned 5 5

 The generic child layer-identifier format is shown below:

 802-1Q Child Layer-Identifier Format
 +--------+--------+--------+--------+
 | Base | |
 | ID | base-specific format |
 | | |
 +--------+--------+--------+--------+
 | 1 | 3 | octet count

 Base ID == 0

 For payloads encoded with either the Ethernet or LLC/SNAP headers
 following the VLAN header, children of this protocol are
 identified exactly as described for the ’ether2’ or ’snap’ base
 layers.

 Children are encoded as [0.0.129.0], the protocol identifier
 for ’802-1Q’ followed by [0.0.a.b] where ’a’ and ’b’ are the
 network byte order encodings of the high order byte and low order
 byte of the Ethernet-II type value.

 For example, a protocolDirID-fragment value of:
 0.0.0.1.0.0.129.0.0.0.8.0
 defines IP, VLAN-encapsulated in ether2.

Bierman, et al. Standards Track [Page 32]

RFC 2895 RMON PI Reference August 2000

 Children of this format are named as ’802-1Q’ followed by the
 type field value in hexadecimal.

 So the above example would be declared as:
 ’802-1Q 0x0800’.

 Base ID == 2

 For payloads encoded with a (non-SNAP) LLC header following the
 VLAN header, children of this protocol are identified exactly as
 described for the ’llc’ base layer.

 Children are encoded as [0.0.129.0], the protocol identifier
 component for 802.1Q, followed by [2.0.0.a] where ’a’ is the
 SAP value which maps to the child protocol. For example, a
 protocolDirID-fragment value of:
 0.0.0.1.0.0.129.0.2.0.0.240

 defines NetBios, VLAN-encapsulated over LLC.

 Children are named as ’802-1Q’ followed by the SAP value in
 hexadecimal, with the leading octet set to the value 2.

 So the above example would have been named:
 ’802-1Q 0x020000f0’

 Base ID == 4

 For payloads encoded with LLC/SNAP (non-zero OUI) headers
 following the VLAN header, children of this protocol are
 identified exactly as described for the ’vsnap’ base layer.

 Children are encoded as [0.0.129.0], the protocol identifier
 for ’802-1Q’, followed by [4.a.b.c] where ’a’, ’b’ and ’c’ are
 the 3 octets of the OUI field in network byte order.

 For example, a protocolDirID-fragment value of:
 0.0.0.1.0.0.129.0.4.8.0.7 defines the Apple-specific set of
 protocols, VLAN-encapsulated over vsnap.

 Children are named as ’802-1Q’ followed by the <OUI> value, which
 is represented as 3 octets in hexadecimal notation, with a
 leading octet set to the value 4.

 So the above example would be named:
 ’802-1Q 0x04080007’.

Bierman, et al. Standards Track [Page 33]

RFC 2895 RMON PI Reference August 2000

 Base ID == 5

 For payloads which can only be identified as ’ianaAssigned’
 protocols, children of this protocol are identified exactly as
 described for the ’ianaAssigned’ base layer.

 Children are encoded as [0.0.129.0], the protocol identifier
 for ’802-1Q’, followed by [5.0.a.b] where ’a’ and ’b’ are the
 network byte order encodings of the high order byte and low order
 byte of the enumeration value for the particular IANA assigned
 protocol.

 For example, a protocolDirID-fragment value of:
 0.0.0.1.0.0.129.0.5.0.0.0.1

 defines the IPX protocol, VLAN-encapsulated directly in 802.3

 Children are named ’802-1Q’ followed by the numeric value of the
 particular IANA assigned protocol, with a leading octet set to
 the value of 5.

 Children are named ’802-1Q’ followed by the hexadecimal encoding
 of the child identifier. The above example would be named:

 ’802-1Q 0x05000001’. "
 DECODING
 "VLAN headers and tagged frame structure are defined in
 [IEEE802.1Q]."
 REFERENCE
 "The 802.1Q Protocol is defined in the Draft Standard for Virtual
 Bridged Local Area Networks [IEEE802.1Q]."
 ::= {
 ether2 0x8100 -- Ethernet or SNAP encoding of TPID
 -- snap 0x8100 ** excluded to reduce PD size & complexity
 }

5. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to

Bierman, et al. Standards Track [Page 34]

RFC 2895 RMON PI Reference August 2000

 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat."

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

6. Acknowledgements

 This document was produced by the IETF RMONMIB Working Group.

 The authors wish to thank the following people for their
 contributions to this document:

 Anil Singhal
 Frontier Software Development, Inc.

 Jeanne Haney
 Bay Networks

 Dan Hansen
 Network General Corp.

 Special thanks are in order to the following people for writing RMON
 PI macro compilers, and improving the specification of the PI macro
 language:

 David Perkins
 DeskTalk Systems, Inc.

 Skip Koppenhaver
 Technically Elite, Inc.

7. References

 [AF-LANE-0021.000] LAN Emulation Sub-working Group, B. Ellington,
 "LAN Emulation over ATM - Version 1.0", AF-
 LANE-0021.000, ATM Forum, IBM, January 1995.

 [AF-NM-TEST-0080.000] Network Management Sub-working Group, Test
 Sub-working Group, A. Bierman, "Remote
 Monitoring MIB Extensions for ATM Networks",
 AF- NM-TEST-0080.000, ATM Forum, Cisco Systems,
 February 1997.

Bierman, et al. Standards Track [Page 35]

RFC 2895 RMON PI Reference August 2000

 [IEEE802.1D-1998] LAN MAN Standards Committee of the IEEE
 Computer Society, "Information technology --
 Telecommunications and information exchange
 between systems -- Local and metropolitan area
 networks -- Common specification -- Part 3:
 Media Access Control (MAC) Bridges", ISO/IEC
 Final DIS 15802-3 (IEEE P802.1D/D17) Institute
 of Electrical and Electronics Engineers, Inc.,
 May 1998.

 [IEEE802.1Q] LAN MAN Standards Committee of the IEEE
 Computer Society, "IEEE Standards for Local and
 Metropolitan Area Networks: Virtual Bridged
 Local Area Networks", Draft Standard
 P802.1Q/D11, Institute of Electrical and
 Electronics Engineers, Inc., July 1998.

 [RFC1155] Rose, M. and K. McCloghrie, "Structure and
 Identification of Management Information for
 TCP/IP-based Internets", STD 16, RFC 1155, May
 1990.

 [RFC1157] Case, J., Fedor, M., Schoffstall, M. and J.
 Davin, "Simple Network Management Protocol",
 STD 15, RFC 1157, May 1990.

 [RFC1212] Rose, M. and K. McCloghrie, "Concise MIB
 Definitions", STD 16, RFC 1212, March 1991.

 [RFC1215] Rose, M., "A Convention for Defining Traps for
 use with the SNMP", RFC 1215, March 1991.

 [RFC1483] Heinanen, J., "Multiprotocol Encapsulation over
 ATM Adaptation Layer 5", RFC 1483, July 1993.

 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers",
 STD 2, RFC 1700, October 1994.

 [RFC1901] Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Introduction to Community-based
 SNMPv2", RFC 1901, January 1996.

 [RFC1902] Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Structure of Management
 Information for version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1902,
 January 1996.

Bierman, et al. Standards Track [Page 36]

RFC 2895 RMON PI Reference August 2000

 [RFC1903] Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Textual Conventions for version 2
 of the Simple Network Management Protocol
 (SNMPv2)", RFC 1903, January 1996.

 [RFC1904] Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Conformance Statements for version
 2 of the Simple Network Management Protocol
 (SNMPv2)", RFC 1904, January 1996.

 [RFC1905] Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Protocol Operations for Version 2
 of the Simple Network Management Protocol
 (SNMPv2)", RFC 1905, January 1996.

 [RFC1906] Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Transport Mappings for Version 2
 of the Simple Network Management Protocol
 (SNMPv2)"", RFC 1906, January 1996.

 [RFC2021] Waldbusser, S., "Remote Network Monitoring MIB
 (RMON-2)", RFC 2021, January 1997.

 [RFC2074] Bierman, A. and R. Iddon, "Remote Network
 Monitoring MIB Protocol Identifiers", RFC 2074,
 January 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC2233] McCloghrie, K. and F. Kastenholz, "The
 Interfaces Group MIB Using SMIv2", RFC 2233,
 November 1997.

 [RFC2271] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for Describing SNMP Management
 Frameworks", RFC 2271, January 1998.

 [RFC2272] Case, J., Harrington D., Presuhn R. and B.
 Wijnen, "Message Processing and Dispatching for
 the Simple Network Management Protocol (SNMP)",
 RFC 2272, January 1998.

 [RFC2273] Levi, D., Meyer, P. and B. Stewart, "SNMPv3
 Applications", RFC 2273, January 1998.

Bierman, et al. Standards Track [Page 37]

RFC 2895 RMON PI Reference August 2000

 [RFC2274] Blumenthal, U. and B. Wijnen, "User-based
 Security Model (USM) for version 3 of the
 Simple Network Management Protocol (SNMPv3)",
 RFC 2274, January 1998.

 [RFC2275] Wijnen, B., Presuhn, R. and K. McCloghrie,
 "View-based Access Control Model (VACM) for the
 Simple Network Management Protocol (SNMP)", RFC
 2275, January 1998.

 [RFC2570] Case, J., Mundy, R., Partain, D. and B.
 Stewart, "Introduction to Version 3 of the
 Internet-standard Network Management
 Framework", RFC 2570, April 1999.

 [RFC2571] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for Describing SNMP Management
 Frameworks", RFC 2571, April 1999.

 [RFC2572] Case, J., Harrington D., Presuhn R. and B.
 Wijnen, "Message Processing and Dispatching for
 the Simple Network Management Protocol (SNMP)",
 RFC 2572, April 1999.

 [RFC2573] Levi, D., Meyer, P. and B. Stewart, "SNMPv3
 Applications", RFC 2573, April 1999.

 [RFC2574] Blumenthal, U. and B. Wijnen, "User-based
 Security Model (USM) for version 3 of the
 Simple Network Management Protocol (SNMPv3)",
 RFC 2574, April 1999.

 [RFC2575] Wijnen, B., Presuhn, R. and K. McCloghrie,
 "View-based Access Control Model (VACM) for the
 Simple Network Management Protocol (SNMP)", RFC
 2575, April 1999.

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J.,
 Case, J., Rose, M. and S. Waldbusser,
 "Structure of Management Information Version 2
 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J.,
 Case, J., Rose, M. and S. Waldbusser, "Textual
 Conventions for SMIv2", STD 58, RFC 2579, April
 1999.

Bierman, et al. Standards Track [Page 38]

RFC 2895 RMON PI Reference August 2000

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J.,
 Case, J., Rose, M. and S. Waldbusser,
 "Conformance Statements for SMIv2", STD 58, RFC
 2580, April 1999.

 [RFC2896] Bierman, A., Bucci, C. and R. Iddon, "Remote
 Network Monitoring MIB Protocol Identifier
 Macros", RFC 2896, August 2000.

8. IANA Considerations

 The protocols identified in this specification are almost entirely
 defined in external documents. In some rare cases, an arbitrary
 Protocol Identifier assignment must be made in order to support a
 particular protocol in the RMON-2 protocolDirTable. Protocol
 Identifier macros for such protocols will be defined under the ’
 ianaAssigned’ base layer (see sections 3. and 4.2).

 At this time, only one protocol is defined under the ianaAssigned
 base layer, called ’ipxOverRaw8023’ (see section 4.2).

9. Security Considerations

 This document discusses the syntax and semantics of textual
 descriptions of networking protocols, not the definition of any
 networking behavior. As such, no security considerations are raised
 by this memo.

Bierman, et al. Standards Track [Page 39]

RFC 2895 RMON PI Reference August 2000

10. Authors’ Addresses

 Andy Bierman
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA USA 95134

 Phone: +1 408-527-3711
 EMail: abierman@cisco.com

 Chris Bucci
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA USA 95134

 Phone: +1 408-527-5337
 EMail: cbucci@cisco.com

 Robin Iddon
 c/o 3Com Inc.
 Blackfriars House
 40/50 Blackfrias Street
 Edinburgh, EH1 1NE, UK

 Phone: +44 131.558.3888
 EMail: None

Bierman, et al. Standards Track [Page 40]

RFC 2895 RMON PI Reference August 2000

Appendix A: Changes since RFC 2074

 The differences between RFC 2074 and this document are:

 - RFC 2074 has been split into a reference document
 (this document) on the standards track and an informational
 document [RFC2896], in order to remove most
 protocol identifier macros out of the standards track document.
 - Administrative updates; added an author, added copyrights,
 updated SNMP framework boilerplate;
 - Updated overview section.
 - Section 2.1 MUST, SHOULD text added per template
 - Section 2.1 added some new terms
 - parent protocol
 - child protocol
 - protocol encapsulation tree
 - Added section 2.3 about splitting into 2 documents:

 "Relationship to the RMON Protocol Identifier Macros Document"
 - Added section 2.4 "Relationship to the ATM-RMON MIB"
 - rewrote section 3.2 "Protocol Identifier Macro Format"
 But no semantic changes were made; The PI macro syntax
 is now specified in greater detail using BNF notation.
 - Section 3.2.3.1 "Mapping of the ’countsFragments(0)’ BIT"
 - this section was clarified to allow multiple
 protocolDirParameters octets in a given PI string
 to set the ’countsFragments’ bit. The RFC version
 says just one octet can set this BIT. It is a
 useful feature to identify fragmentation at
 multiple layers, and most RMON-2 agents were
 already doing this, so the WG agreed to this
 clarification.
 - Added section 4.3 "Encapsualtion Layers"
 - This document ends after the base layer encapsulation
 definitions (through RFC 2074, section 5.2)
 - Added Intellectual Property section
 - Moved RFC 2074 section 5.3
 "L3: Children of Base Protocol Identifiers"
 through the end of RFC 2074, to the PI Reference [RFC2896]
 document, in which many new protocol identifier macros were
 added for application protocols and non-IP protocol
 stacks.
 - Acknowledgements section has been updated

Bierman, et al. Standards Track [Page 41]

RFC 2895 RMON PI Reference August 2000

11. Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Bierman, et al. Standards Track [Page 42]

