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1. Introduction 

The Real-Time Communications on the Web (RTCWEB) working group standardized protocols for

real-time communications between Web browsers, generally called "WebRTC" . The major

use cases for WebRTC technology are real-time audio and/or video calls, Web conferencing, and direct

data transfer. Unlike most conventional real-time systems, (e.g., SIP-based  soft phones)

WebRTC communications are directly controlled by some Web server, via a JavaScript (JS) API as

shown in Figure 1.

A more complicated system might allow for interdomain calling, as shown in Figure 2. The protocol to

be used between the domains is not standardized by WebRTC, but given the installed base and the

form of the WebRTC API is likely to be something SDP-based like SIP or something like Extensible

Messaging and Presence Protocol (XMPP) .

[RFC9995]

[RFC3261]

Figure 1: A simple WebRTC system 

                            +----------------+
                            |                |
                            |   Web Server   |
                            |                |
                            +----------------+
                                ^        ^
                               /          \
                       HTTP   /            \   HTTP
                             /              \
                            /                \
                           v                  v
                        JS API              JS API
                  +-----------+            +-----------+
                  |           |    Media   |           |
                  |  Browser  |<---------->|  Browser  |
                  |           |            |           |
                  +-----------+            +-----------+

[RFC6120]
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This system presents a number of new security challenges, which are analyzed in . This

document describes a security architecture for WebRTC which addresses the threats and requirements

described in that document.

Figure 2: A multidomain WebRTC system 

                 +--------------+             +--------------+
                 |              | SIP,XMPP,...|              |
                 |  Web Server  |<----------->|  Web Server  |
                 |              |             |              |
                 +--------------+             +--------------+
                        ^                             ^
                        |                             |
                  HTTP  |                             |  HTTP
                        |                             |
                        v                             v
                        JS API                    JS API
                  +-----------+                  +-----------+
                  |           |        Media     |           |
                  |  Browser  |<---------------->|  Browser  |
                  |           |                  |           |
                  +-----------+                  +-----------+

[RFC9998]

2. Terminology 

The key words " ", " ", " ", " ", " ", " ",

" ", " ", " ", " ", and " " in this

document are to be interpreted as described in BCP 14   when, and only when,

they appear in all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD

SHOULD NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Trust Model 

The basic assumption of this architecture is that network resources exist in a hierarchy of trust, rooted

in the browser, which serves as the user's Trusted Computing Base (TCB). Any security property

which the user wishes to have enforced must be ultimately guaranteed by the browser (or transitively

by some property the browser verifies). Conversely, if the browser is compromised, then no security

guarantees are possible. Note that there are cases (e.g., Internet kiosks) where the user can't really trust

the browser that much. In these cases, the level of security provided is limited by how much they trust

the browser.
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Optimally, we would not rely on trust in any entities other than the browser. However, this is

unfortunately not possible if we wish to have a functional system. Other network elements fall into two

categories: those which can be authenticated by the browser and thus can be granted permissions to

access sensitive resources, and those which cannot be authenticated and thus are untrusted.

3.1. Authenticated Entities 

There are two major classes of authenticated entities in the system:

• Calling services: Web sites whose origin we can verify (optimally via HTTPS, but in some cases

because we are on a topologically restricted network, such as behind a firewall, and can infer

authentication from firewall behavior).  

• Other users: WebRTC peers whose origin we can verify cryptographically (optimally via DTLS-

SRTP).  

Note that merely being authenticated does not make these entities trusted. For instance, just because

we can verify that https://www.example.org/ is owned by Dr. Evil does not mean that we can trust Dr.

Evil to access our camera and microphone. However, it gives the user an opportunity to determine

whether he wishes to trust Dr. Evil or not; after all, if he desires to contact Dr. Evil (perhaps to arrange

for ransom payment), it's safe to temporarily give him access to the camera and microphone for the

purpose of the call, but he doesn't want Dr. Evil to be able to access his camera and microphone other

than during the call. The point here is that we must first identify other elements before we can

determine whether and how much to trust them. Additionally, sometimes we need to identify the

communicating peer before we know what policies to apply.

3.2. Unauthenticated Entities 

Other than the above entities, we are not generally able to identify other network elements, thus we

cannot trust them. This does not mean that it is not possible to have any interaction with them, but it

means that we must assume that they will behave maliciously and design a system which is secure

even if they do so.

4. Overview 

This section describes a typical WebRTC session and shows how the various security elements interact

and what guarantees are provided to the user. The example in this section is a "best case" scenario in

which we provide the maximal amount of user authentication and media privacy with the minimal

level of trust in the calling service. Simpler versions with lower levels of security are also possible and

are noted in the text where applicable. It's also important to recognize the tension between security (or
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performance) and privacy. The example shown here is aimed towards settings where we are more

concerned about secure calling than about privacy, but as we shall see, there are settings where one

might wish to make different tradeoffs--this architecture is still compatible with those settings.

For the purposes of this example, we assume the topology shown in the figures below. This topology is

derived from the topology shown in Figure 1, but separates Alice and Bob's identities from the process

of signaling. Specifically, Alice and Bob have relationships with some Identity Provider (IdP) that

supports a protocol (such as OpenID Connect) that can be used to demonstrate their identity to other

parties. For instance, Alice might have an account with a social network which she can then use to

authenticate to other web sites without explicitly having an account with those sites; this is a fairly

conventional pattern on the Web. Section 7.1 provides an overview of Identity Providers and the

relevant terminology. Alice and Bob might have relationships with different IdPs as well.

This separation of identity provision and signaling isn't particularly important in "closed world" cases

where Alice and Bob are users on the same social network and have identities based on that domain

(Figure 3). However, there are important settings where that is not the case, such as federation (calls

from one domain to another; Figure 4) and calling on untrusted sites, such as where two users who

have a relationship via a given social network want to call each other on another, untrusted, site, such

as a poker site.

Note that the servers themselves are also authenticated by an external identity service, the SSL/TLS

certificate infrastructure (not shown). As is conventional in the Web, all identities are ultimately rooted

in that system. For instance, when an IdP makes an identity assertion, the Relying Party consuming

that assertion is able to verify because it is able to connect to the IdP via HTTPS.
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Figure 4 shows essentially the same calling scenario but with a call between two separate domains

(i.e., a federated case), as in Figure 2. As mentioned above, the domains communicate by some

unspecified protocol and providing separate signaling and identity allows for calls to be authenticated

regardless of the details of the inter-domain protocol.

Figure 3: A call with IdP-based identity 

                            +----------------+
                            |                |
                            |     Signaling  |
                            |     Server     |
                            |                |
                            +----------------+
                                ^        ^
                               /          \
                       HTTPS  /            \   HTTPS
                             /              \
                            /                \
                           v                  v
                        JS API              JS API
                  +-----------+            +-----------+
                  |           |    Media   |           |
            Alice |  Browser  |<---------->|  Browser  | Bob
                  |           | (DTLS+SRTP)|           |
                  +-----------+            +-----------+
                        ^      ^--+     +--^     ^
                        |         |     |        |
                        v         |     |        v
                  +-----------+   |     |  +-----------+
                  |           |<--------+  |           |
                  |   IdP1    |   |        |    IdP2   |
                  |           |   +------->|           |
                  +-----------+            +-----------+
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4.1. Initial Signaling 

For simplicity, assume the topology in Figure 3. Alice and Bob are both users of a common calling

service; they both have approved the calling service to make calls (we defer the discussion of device

access permissions until later). They are both connected to the calling service via HTTPS and so know

the origin with some level of confidence. They also have accounts with some identity provider. This

sort of identity service is becoming increasingly common in the Web environment (with technologies

such as Federated Google Login, Facebook Connect, OAuth, OpenID, WebFinger), and is often

provided as a side effect service of a user's ordinary accounts with some service. In this example, we

show Alice and Bob using a separate identity service, though the identity service may be the same

entity as the calling service or there may be no identity service at all.

Alice is logged onto the calling service and decides to call Bob. She can see from the calling service

that he is online and the calling service presents a JS UI in the form of a button next to Bob's name

which says "Call". Alice clicks the button, which initiates a JS callback that instantiates a

PeerConnection object. This does not require a security check: JS from any origin is allowed to get this

far.

Figure 4: A federated call with IdP-based identity 

        +----------------+    Unspecified    +----------------+
        |                |      protocol     |                |
        |    Signaling   |<----------------->|    Signaling   |
        |    Server      |  (SIP, XMPP, ...) |    Server      |
        |                |                   |                |
        +----------------+                   +----------------+
                 ^                                   ^
                 |                                   |
           HTTPS |                                   | HTTPS
                 |                                   |
                 |                                   |
                 v                                   v
              JS API                               JS API
        +-----------+                             +-----------+
        |           |             Media           |           |
  Alice |  Browser  |<--------------------------->|  Browser  | Bob
        |           |           DTLS+SRTP         |           |
        +-----------+                             +-----------+
              ^      ^--+                      +--^     ^
              |         |                      |        |
              v         |                      |        v
        +-----------+   |                      |  +-----------+
        |           |<-------------------------+  |           |
        |   IdP1    |   |                         |    IdP2   |
        |           |   +------------------------>|           |
        +-----------+                             +-----------+
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Once the PeerConnection is created, the calling service JS needs to set up some media. Because this is

an audio/video call, it creates a MediaStream with two MediaStreamTracks, one connected to an audio

input and one connected to a video input. At this point the first security check is required: untrusted

origins are not allowed to access the camera and microphone, so the browser prompts Alice for

permission.

In the current W3C API, once some streams have been added, Alice's browser + JS generates a

signaling message  containing:

• Media channel information  

• Interactive Connectivity Establishment (ICE)  candidates  

• A fingerprint attribute binding the communication to a key pair . Note that this key

may simply be ephemerally generated for this call or specific to this domain, and Alice may have

a large number of such keys.  

Prior to sending out the signaling message, the PeerConnection code contacts the identity service and

obtains an assertion binding Alice's identity to her fingerprint. The exact details depend on the identity

service (though as discussed in Section 7 PeerConnection can be agnostic to them), but for now it's

easiest to think of as an OAuth token. The assertion may bind other information to the identity besides

the fingerprint, but at minimum it needs to bind the fingerprint.

This message is sent to the signaling server, e.g., by XMLHttpRequest  or by

WebSockets , over TLS . The signaling server processes the message from

Alice's browser, determines that this is a call to Bob and sends a signaling message to Bob's browser

(again, the format is currently undefined). The JS on Bob's browser processes it, and alerts Bob to the

incoming call and to Alice's identity. In this case, Alice has provided an identity assertion and so Bob's

browser contacts Alice's identity provider (again, this is done in a generic way so the browser has no

specific knowledge of the IdP) to verify the assertion. It is also possible to have IdPs with which the

browser has a specific trustrelationship, as described in Section 7.1. This allows the browser to display

a trusted element in the browser chrome indicating that a call is coming in from Alice. If Alice is in

Bob's address book, then this interface might also include her real name, a picture, etc. The calling site

will also provide some user interface element (e.g., a button) to allow Bob to answer the call, though

this is most likely not part of the trusted UI.

[RFC9996]

[RFC8445]

[RFC5763]

[XmlHttpRequest]

[RFC6455] [RFC8446]
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If Bob agrees a PeerConnection is instantiated with the message from Alice's side. Then, a similar

process occurs as on Alice's browser: Bob's browser prompts him for device permission, the media

streams are created, and a return signaling message containing media information, ICE candidates, and

a fingerprint is sent back to Alice via the signaling service. If Bob has a relationship with an IdP, the

message will also come with an identity assertion.

At this point, Alice and Bob each know that the other party wants to have a secure call with them.

Based purely on the interface provided by the signaling server, they know that the signaling server

claims that the call is from Alice to Bob. This level of security is provided merely by having the

fingerprint in the message and having that message received securely from the signaling server.

Because the far end sent an identity assertion along with their message, they know that this is verifiable

from the IdP as well. Note that if the call is federated, as shown in Figure 4 then Alice is able to verify

Bob's identity in a way that is not mediated by either her signaling server or Bob's. Rather, she verifies

it directly with Bob's IdP.

Of course, the call works perfectly well if either Alice or Bob doesn't have a relationship with an IdP;

they just get a lower level of assurance. I.e., they simply have whatever information their calling site

claims about the caller/callee's identity. Moreover, Alice might wish to make an anonymous call

through an anonymous calling site, in which case she would of course just not provide any identity

assertion and the calling site would mask her identity from Bob.

4.2. Media Consent Verification 

As described in , media consent verification is provided via ICE. Thus, Alice

and Bob perform ICE checks with each other. At the completion of these checks, they are ready to

send non-ICE data.

At this point, Alice knows that (a) Bob (assuming he is verified via his IdP) or someone else who the

signaling service is claiming is Bob is willing to exchange traffic with her and (b) that either Bob is at

the IP address which she has verified via ICE or there is an attacker who is on-path to that IP address

detouring the traffic. Note that it is not possible for an attacker who is on-path between Alice and Bob

but not attached to the signaling service to spoof these checks because they do not have the ICE

credentials. Bob has the same security guarantees with respect to Alice.

4.3. DTLS Handshake 

Once the requisite ICE checks have completed, Alice and Bob can set up a secure channel or channels.

This is performed via DTLS  and DTLS-SRTP  keying for SRTP  for

the media channel and SCTP over DTLS  for data channels. Specifically, Alice and Bob

[RFC9998], Section 4.2

[RFC6347] [RFC5763] [RFC3711]

[RFC8261]
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perform a DTLS handshake on every component which has been established by ICE. The total number

of channels depends on the amount of muxing; in the most likely case we are using both RTP/RTCP

mux and muxing multiple media streams on the same channel, in which case there is only one DTLS

handshake. Once the DTLS handshake has completed, the keys are exported  and used to

key SRTP for the media channels.

At this point, Alice and Bob know that they share a set of secure data and/or media channels with keys

which are not known to any third-party attacker. If Alice and Bob authenticated via their IdPs, then

they also know that the signaling service is not mounting a man-in-the-middle attack on their traffic.

Even if they do not use an IdP, as long as they have minimal trust in the signaling service not to

perform a man-in-the-middle attack, they know that their communications are secure against the

signaling service as well (i.e., that the signaling service cannot mount a passive attack on the

communications).

4.4. Communications and Consent Freshness 

From a security perspective, everything from here on in is a little anticlimactic: Alice and Bob

exchange data protected by the keys negotiated by DTLS. Because of the security guarantees discussed

in the previous sections, they know that the communications are encrypted and authenticated.

The one remaining security property we need to establish is "consent freshness", i.e., allowing Alice to

verify that Bob is still prepared to receive her communications so that Alice does not continue to send

large traffic volumes to entities which went abruptly offline. ICE specifies periodic STUN keepalives

but only if media is not flowing. Because the consent issue is more difficult here, we require WebRTC

implementations to periodically send keepalives. As described in Section 6.3, these keepalives 

be based on the consent freshness mechanism specified in . If a keepalive fails and no new

ICE channels can be established, then the session is terminated.

[RFC5705]

MUST

[RFC7675]

5. SDP Identity Attribute 

The SDP 'identity' attribute is a session-level attribute that is used by an endpoint to convey its identity

assertion to its peer. The identity assertion value is encoded as Base-64, as described in 

.

The procedures in this section are based on the assumption that the identity assertion of an endpoint is

bound to the fingerprints of the endpoint. This does not preclude the definition of alternative means of

binding an assertion to the endpoint, but such means are outside the scope of this specification.

Section 4 of

[RFC4648]
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Name:

Value:

Usage Level:

Charset Dependent:

Default Value:

Name:

The semantics of multiple 'identity' attributes within an offer or answer are undefined. Implementations

 only include a single 'identity' attribute in an offer or answer and relying parties  elect

to ignore all but the first 'identity' attribute.

identity  

identity-assertion  

session  

no  

N/A  

identity  

Syntax:

• ALPHA and DIGIT as defined in  

• base64 as defined in  

Example:

Note that long lines in the example are folded to meet the column width constraints of this document;

the backslash ("\") at the end of a line, the carriage return that follows, and whitespace shall be

ignored.

SHOULD MAY

Figure 5: ABNF 

  identity-assertion        = identity-assertion-value
                              *(SP identity-extension)
  identity-assertion-value  = base64
  identity-extension        = extension-name [ "=" extension-value ]
  extension-name            = token
  extension-value           = 1*(%x01-09 / %x0b-0c / %x0e-3a / %x3c-
ff)
                              ; byte-string from [RFC4566]

 

[RFC4566]

[RFC4566]

    a=identity:\
    eyJpZHAiOnsiZG9tYWluIjoiZXhhbXBsZS5vcmciLCJwcm90b2NvbCI6ImJvZ3Vz\
    In0sImFzc2VydGlvbiI6IntcImlkZW50aXR5XCI6XCJib2JAZXhhbXBsZS5vcmdc\
    IixcImNvbnRlbnRzXCI6XCJhYmNkZWZnaGlqa2xtbm9wcXJzdHV2d3l6XCIsXCJz\
    aWduYXR1cmVcIjpcIjAxMDIwMzA0MDUwNlwifSJ9
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This specification does not define any extensions for the attribute.

The identity-assertion value is a JSON  encoded string. The JSON object contains two

keys: "assertion" and "idp". The assertion key value contains an opaque string that is consumed by

the IdP. The idp key value contains a dictionary with one or two further values that identify the IdP.

See Section 7.6 for more details.

[RFC8259]

5.1. Offer/Answer Considerations 

This section defines the SDP Offer/Answer  considerations for the SDP 'identity' attribute.

Within this section, 'initial offer' refers to the first offer in the SDP session that contains an SDP 

identity attribute.

[RFC3264]

5.1.1. Generating the Initial SDP Offer 

When an offerer sends an offer, in order to provide its identity assertion to the peer, it includes an

'identity' attribute in the offer. In addition, the offerer includes one or more SDP 'fingerprint' attributes.

The 'identity' attribute  be bound to all the 'fingerprint' attributes in the session description.MUST

5.1.2. Generating of SDP Answer 

If the answerer elects to include an 'identity' attribute, it follows the same steps as those in Section

5.1.1. The answerer can choose to include or omit an 'identity' attribute independently, regardless of

whether the offerer did so.

5.1.3. Processing an SDP Offer or Answer 

When an endpoint receives an offer or answer that contains an 'identity' attribute, the answerer can use

the the attribute information to contact the IdP and verify the identity of the peer. If the identity

requires a third-party IdP as described in Section 7.1 then that IdP will need to have been specifically

configured. If the identity verification fails, the answerer  discard the offer or answer as

malformed.

MUST

5.1.4. Modifying the Session 

When modifying a session, if the set of fingerprints is unchanged, then the sender  send the same

'identity' attribute. In this case, the established identity  be applied to existing DTLS connections

as well as new connections established using one of those fingerprints. Note that 

 requires that each media section use the same set of fingerprints for every media section. If a new

identity attribute is received, then the receiver  apply that identity to all existing connections.

MAY

MUST

[RFC9996], Section

5.2.1

MUST
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If the set of fingerprints changes, then the sender  either send a new 'identity' attribute or none at

all. Because a change in fingerprints also causes a new DTLS connection to be established, the receiver

 discard all previously established identities.

MUST

MUST

6. Detailed Technical Description 

6.1. Origin and Web Security Issues 

The basic unit of permissions for WebRTC is the origin . Because the security of the origin

depends on being able to authenticate content from that origin, the origin can only be securely

established if data is transferred over HTTPS . Thus, clients  treat HTTP and HTTPS

origins as different permissions domains. Note: this follows directly from the origin security model and

is stated here merely for clarity.

Many web browsers currently forbid by default any active mixed content on HTTPS pages. That is,

when JavaScript is loaded from an HTTP origin onto an HTTPS page, an error is displayed and the

HTTP content is not executed unless the user overrides the error. Any browser which enforces such a

policy will also not permit access to WebRTC functionality from mixed content pages (because they

never display mixed content). Browsers which allow active mixed content  nevertheless disable

WebRTC functionality in mixed content settings.

Note that it is possible for a page which was not mixed content to become mixed content during the

duration of the call. The major risk here is that the newly arrived insecure JS might redirect media to a

location controlled by the attacker. Implementations  either choose to terminate the call or

display a warning at that point.

Also note that the security architecture depends on the keying material not being available to move

between origins. But, it is assumed that the identity assertion can be passed to anyone that the page

cares to.

[RFC6454]

[RFC2818] MUST

MUST

MUST

6.2. Device Permissions Model 

Implementations  obtain explicit user consent prior to providing access to the camera and/or

microphone. Implementations  at minimum support the following two permissions models for

HTTPS origins.

• Requests for one-time camera/microphone access.  

• Requests for permanent access.  

MUST

MUST
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API Requirement:

UI Requirement:

UI Requirement:

Because HTTP origins cannot be securely established against network attackers, implementations 

 refuse all permissions grants for HTTP origins.

In addition, they  support requests for access that promise that media from this grant will be

sent to a single communicating peer (obviously there could be other requests for other peers), eE.g.,

"Call customerservice@example.org". The semantics of this request are that the media stream from the

camera and microphone will only be routed through a connection which has been cryptographically

verified (through the IdP mechanism or an X.509 certificate in the DTLS-SRTP handshake) as being

associated with the stated identity. Note that it is unlikely that browsers would have X.509 certificates,

but servers might. Browsers servicing such requests  clearly indicate that identity to the user

when asking for permission. The idea behind this type of permissions is that a user might have a fairly

narrow list of peers he is willing to communicate with, e.g., "my mother" rather than "anyone on

Facebook". Narrow permissions grants allow the browser to do that enforcement.

The API  provide a mechanism for the requesting JS to relinquish the

ability to see or modify the media (e.g., via MediaStream.record()). Combined with secure

authentication of the communicating peer, this allows a user to be sure that the calling site is not

accessing or modifying their conversion.  

The UI  clearly indicate when the user's camera and microphone are in use.

This indication  be suppressable by the JS and  clearly indicate how to terminate

device access, and provide a UI means to immediately stop camera/microphone input without the

JS being able to prevent it.  

If the UI indication of camera/microphone use are displayed in the browser such

that minimizing the browser window would hide the indication, or the JS creating an overlapping

window would hide the indication, then the browser  stop camera and microphone input

when the indication is hidden. [Note: this may not be necessary in systems that are non-windows-

based but that have good notifications support, such as phones.]  

• Browsers  permit permanent screen or application sharing permissions to be installed

as a response to a JS request for permissions. Instead, they must require some other user action

such as a permissions setting or an application install experience to grant permission to a site.  

• Browsers  provide a separate dialog request for screen/application sharing permissions

even if the media request is made at the same time as camera and microphone.  

• The browser  indicate any windows which are currently being shared in some unambiguous

way. Windows which are not visible  be shared even if the application is being

shared. If the screen is being shared, then that  be indicated.  

MUST

SHOULD

SHOULD

MUST

MUST

MUST NOT MUST

SHOULD

MUST NOT

MUST

MUST

MUST NOT

MUST
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Browsers  permit the formation of data channels without any direct user approval. Because sites

can always tunnel data through the server, further restrictions on the data channel do not provide any

additional security. (See Section 6.3 for a related issue).

Implementations which support some form of direct user authentication  also provide a

policy by which a user can authorize calls only to specific communicating peers. Specifically, the

implementation  provide the following interfaces/controls:

• Allow future calls to this verified user.  

• Allow future calls to any verified user who is in my system address book (this only works with

address book integration, of course).  

Implementations  also provide a different user interface indication when calls are in progress

to users whose identities are directly verifiable. Section 6.5 provides more on this.

MAY

SHOULD

SHOULD

SHOULD

6.3. Communications Consent 

Browser client implementations of WebRTC  implement ICE. Server gateway implementations

which operate only at public IP addresses  implement either full ICE or ICE-Lite .

Browser implementations  verify reachability via ICE prior to sending any non-ICE packets to a

given destination. Implementations  provide the ICE transaction ID to JavaScript during

the lifetime of the transaction (i.e., during the period when the ICE stack would accept a new response

for that transaction). The JS  be permitted to control the local ufrag and password, though

it of course knows it.

While continuing consent is required, the ICE  keepalives use STUN Binding

Indications which are one-way and therefore not sufficient. The current WG consensus is to use ICE

Binding Requests for continuing consent freshness. ICE already requires that implementations respond

to such requests, so this approach is maximally compatible. A separate document will profile the ICE

timers to be used; see .

MUST

MUST [RFC8445]

MUST

MUST NOT

MUST NOT

[RFC8445], Section 10

[RFC7675]

6.4. IP Location Privacy 

A side effect of the default ICE behavior is that the peer learns one's IP address, which leaks large

amounts of location information. This has negative privacy consequences in some circumstances. The

API requirements in this section are intended to mitigate this issue. Note that these requirements are

not intended to protect the user's IP address from a malicious site. In general, the site will learn at least

a user's server reflexive address from any HTTP transaction. Rather, these requirements are intended to

allow a site to cooperate with the user to hide the user's IP address from the other side of the call.

RFC 9999 WebRTC Sec. Arch. August 2019

Rescorla Standards Track Page 18

https://www.rfc-editor.org/info/rfc8445#section-10


API Requirement:

API Requirement:

API Requirement:

Hiding the user's IP address from the server requires some sort of explicit privacy preserving

mechanism on the client (e.g., Tor Browser )

and is out of scope for this specification.

The API  provide a mechanism to allow the JS to suppress ICE negotiation

(though perhaps to allow candidate gathering) until the user has decided to answer the call [note:

determining when the call has been answered is a question for the JS.] This enables a user to

prevent a peer from learning their IP address if they elect not to answer a call and also from

learning whether the user is online.  

The API  provide a mechanism for the calling application JS to indicate

that only TURN candidates are to be used. This prevents the peer from learning one's IP address at

all. This mechanism  also permit suppression of the related address field, since that leaks

local addresses.  

The API  provide a mechanism for the calling application to reconfigure an

existing call to add non-TURN candidates. Taken together, this and the previous requirement allow

ICE negotiation to start immediately on incoming call notification, thus reducing post-dial delay,

but also to avoid disclosing the user's IP address until they have decided to answer. They also allow

users to completely hide their IP address for the duration of the call. Finally, they allow a

mechanism for the user to optimize performance by reconfiguring to allow non-TURN candidates

during an active call if the user decides they no longer need to hide their IP address  

Note that some enterprises may operate proxies and/or NATs designed to hide internal IP addresses

from the outside world. WebRTC provides no explicit mechanism to allow this function. Either such

enterprises need to proxy the HTTP/HTTPS and modify the SDP and/or the JS, or there needs to be

browser support to set the "TURN-only" policy regardless of the site's preferences.

https://www.torproject.org/projects/torbrowser.html.en

MUST

MUST

MUST

MUST

6.5. Communications Security 

Implementations  support SRTP . Implementations  support DTLS 

and DTLS-SRTP   for SRTP keying. Implementations  support SCTP

over DTLS .

All media channels  be secured via SRTP and SRTCP. Media traffic  be sent over

plain (unencrypted) RTP or RTCP; that is, implementations  negotiate cipher suites with

NULL encryption modes. DTLS-SRTP  be offered for every media channel. WebRTC

implementations  offer SDP Security Descriptions  or select it if offered. A

SRTP MKI  be used.

MUST [RFC3711] MUST [RFC6347]

[RFC5763] [RFC5764] MUST

[RFC8261]

MUST MUST NOT

MUST NOT

MUST

MUST NOT [RFC4568]

MUST NOT
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API Requirement:

API Requirement:

API Requirement:

API Requirement:

UI Requirements:

All data channels  be secured via DTLS.

All Implementations  support DTLS 1.2 with the

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 cipher suite and the 

. Earlier drafts of this specification required DTLS 1.0 with the cipher suite

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, and at the time of this writing some

implementations do not support DTLS 1.2; endpoints which support only DTLS 1.2 might encounter

interoperability issues. The DTLS-SRTP protection profile SRTP_AES128_CM_HMAC_SHA1_80 

 be supported for SRTP. Implementations  favor cipher suites which support (Perfect

Forward Secrecy) PFS over non-PFS cipher suites and  favor AEAD over non-AEAD cipher

suites.

Implementations  implement DTLS renegotiation and  reject it with a

"no_renegotiation" alert if offered.

Endpoints  implement TLS False Start .

The API  generate a new authentication key pair for every new call by

default. This is intended to allow for unlinkability.  

The API  provide a means to reuse a key pair for calls. This can be used to

enable key continuity-based authentication, and could be used to amortize key generation costs.  

Unless the user specifically configures an external key pair, different key pairs 

 be used for each origin. (This avoids creating a super-cookie.)  

When DTLS-SRTP is used, the API  permit the JS to obtain the

negotiated keying material. This requirement preserves the end-to-end security of the media.  

A user-oriented client  provide an "inspector" interface which allows the

user to determine the security characteristics of the media.  

The following properties  be displayed "up-front" in the browser chrome, i.e., without

requiring the user to ask for them:  

• A client  provide a user interface through which a user may determine the security

characteristics for currently-displayed audio and video stream(s)  

• A client  provide a user interface through which a user may determine the security

characteristics for transmissions of their microphone audio and camera video.  

• If the far endpoint was directly verified, either via a third-party verifiable X.509 certificate or

via a Web IdP mechanism (see Section 7) the "security characteristics"  include the

MUST

MUST

P-256 curve

[FIPS186]

MUST MUST

SHOULD

MUST NOT MUST

MUST NOT [RFC7918]

MUST

MUST

MUST

MUST NOT

MUST

SHOULD

MUST

MUST

MUST
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verified information. X.509 identities and Web IdP identities have similar semantics and

should be displayed in a similar way.  

The following properties are more likely to require some "drill-down" from the user:  

• The "security characteristics"  indicate the cryptographic algorithms in use (For

example: "AES-CBC".)  

• The "security characteristics"  indicate whether PFS is provided.  

• The "security characteristics"  include some mechanism to allow an out-of-band

verification of the peer, such as a certificate fingerprint or a Short Authentication String

(SAS). These are compared by the peers to authenticate one another.  

MUST

MUST

MUST

7. Web-Based Peer Authentication 

In a number of cases, it is desirable for the endpoint (i.e., the browser) to be able to directly identify the

endpoint on the other side without trusting the signaling service to which they are connected. For

instance, users may be making a call via a federated system where they wish to get direct

authentication of the other side. Alternately, they may be making a call on a site which they minimally

trust (such as a poker site) but to someone who has an identity on a site they do trust (such as a social

network.)

Recently, a number of Web-based identity technologies (OAuth, Facebook Connect etc.) have been

developed. While the details vary, what these technologies share is that they have a Web-based (i.e.,

HTTP/HTTPS) identity provider which attests to Alice's identity. For instance, if Alice has an account

at example.org, Alice could use the example.org identity provider to prove to others that Alice is

alice@example.org. The development of these technologies allows us to separate calling from identity

provision: Alice could call you on a poker site but identify herself as alice@example.org.

Whatever the underlying technology, the general principle is that the party which is being

authenticated is NOT the signaling site but rather the user (and their browser). Similarly, the relying

party is the browser and not the signaling site. Thus, the browser  generate the input to the IdP

assertion process and display the results of the verification process to the user in a way which cannot

be imitated by the calling site.

The mechanisms defined in this document do not require the browser to implement any particular

identity protocol or to support any particular IdP. Instead, this document provides a generic interface

which any IdP can implement. Thus, new IdPs and protocols can be introduced without change to

MUST
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either the browser or the calling service. This avoids the need to make a commitment to any particular

identity protocol, although browsers may opt to directly implement some identity protocols in order to

provide superior performance or UI properties.

Authenticating Party (AP):

Identity Provider (IdP):

Relying Party (RP):

Authoritative:

Third-Party:

7.1. Trust Relationships: IdPs, APs, and RPs 

Any federated identity protocol has three major participants:

The entity which is trying to establish its identity.  

The entity which is vouching for the AP's identity.  

The entity which is trying to verify the AP's identity.  

The AP and the IdP have an account relationship of some kind: the AP registers with the IdP and is

able to subsequently authenticate directly to the IdP (e.g., with a password). This means that the

browser must somehow know which IdP(s) the user has an account relationship with. This can either

be something that the user configures into the browser or that is configured at the calling site and then

provided to the PeerConnection by the Web application at the calling site. The use case for having this

information configured into the browser is that the user may "log into" the browser to bind it to some

identity. This is becoming common in new browsers. However, it should also be possible for the IdP

information to simply be provided by the calling application.

At a high level there are two kinds of IdPs:

IdPs which have verifiable control of some section of the identity space. For instance,

in the realm of e-mail, the operator of "example.com" has complete control of the namespace

ending in "@example.com". Thus, "alice@example.com" is whoever the operator says it is.

Examples of systems with authoritative identity providers include DNSSEC, RFC 4474, and

Facebook Connect (Facebook identities only make sense within the context of the Facebook

system).  

IdPs which don't have control of their section of the identity space but instead verify

user's identities via some unspecified mechanism and then attest to it. Because the IdP doesn't

actually control the namespace, RPs need to trust that the IdP is correctly verifying AP identities,

and there can potentially be multiple IdPs attesting to the same section of the identity space.

Probably the best-known example of a third-party identity provider is SSL/TLS certificates, where

there are a large number of CAs all of whom can attest to any domain name.  
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If an AP is authenticating via an authoritative IdP, then the RP does not need to explicitly configure

trust in the IdP at all. The identity mechanism can directly verify that the IdP indeed made the relevant

identity assertion (a function provided by the mechanisms in this document), and any assertion it

makes about an identity for which it is authoritative is directly verifiable. Note that this does not mean

that the IdP might not lie, but that is a trustworthiness judgement that the user can make at the time he

looks at the identity.

By contrast, if an AP is authenticating via a third-party IdP, the RP needs to explicitly trust that IdP

(hence the need for an explicit trust anchor list in PKI-based SSL/TLS clients). The list of trustable

IdPs needs to be configured directly into the browser, either by the user or potentially by the browser

manufacturer. This is a significant advantage of authoritative IdPs and implies that if third-party IdPs

are to be supported, the potential number needs to be fairly small.

7.2. Overview of Operation 

In order to provide security without trusting the calling site, the PeerConnection component of the

browser must interact directly with the IdP. The details of the mechanism are described in the W3C

API specification, but the general idea is that the PeerConnection component downloads JS from a

specific location on the IdP dictated by the IdP domain name. That JS (the "IdP proxy") runs in an

isolated security context within the browser and the PeerConnection talks to it via a secure message

passing channel.

Note that there are two logically separate functions here:

• Identity assertion generation.  

• Identity assertion verification.  

The same IdP JS "endpoint" is used for both functions but of course a given IdP might behave

differently and load new JS to perform one function or the other.
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When the PeerConnection object wants to interact with the IdP, the sequence of events is as follows:

1. The browser (the PeerConnection component) instantiates an IdP proxy. This allows the IdP to

load whatever JS is necessary into the proxy. The resulting code runs in the IdP's security context.

 

2. The IdP registers an object with the browser that conforms to the API defined in .  

3. The browser invokes methods on the object registered by the IdP proxy to create or verify identity

assertions.  

This approach allows us to decouple the browser from any particular identity provider; the browser

need only know how to load the IdP's JavaScript--the location of which is determined based on the

IdP's identity--and to call the generic API for requesting and verifying identity assertions. The IdP

provides whatever logic is necessary to bridge the generic protocol to the IdP's specific requirements.

Thus, a single browser can support any number of identity protocols, including being forward

compatible with IdPs which did not exist at the time the browser was written.

     +--------------------------------------+
     | Browser                              |
     |                                      |
     | +----------------------------------+ |
     | | https://calling-site.example.com | |
     | |                                  | |
     | |        Calling JS Code           | |
     | |               ^                  | |
     | +---------------|------------------+ |
     |                 | API Calls          |
     |                 v                    |
     |          PeerConnection              |
     |                 ^                    |
     |                 | API Calls          |
     |     +-----------|-------------+      |   +---------------+
     |     |           v             |      |   |               |
     |     |       IdP Proxy         |<-------->|   Identity    |
     |     |                         |      |   |   Provider    |
     |     | https://idp.example.org |      |   |               |
     |     +-------------------------+      |   +---------------+
     |                                      |
     +--------------------------------------+

[webrtc-api]
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7.3. Items for Standardization 

There are two parts to this work:

• The precise information from the signaling message that must be cryptographically bound to the

user's identity and a mechanism for carrying assertions in JSEP messages. This is specified in 

Section 7.4.  

• The interface to the IdP, which is defined in the companion W3C WebRTC API specification 

.  

The WebRTC API specification also defines JavaScript interfaces that the calling application can use

to specify which IdP to use. That API also provides access to the assertion-generation capability and

the status of the validation process.

[webrtc-api]

7.4. Binding Identity Assertions to JSEP Offer/Answer Transactions 

An identity assertion binds the user's identity (as asserted by the IdP) to the SDP offer/answer

exchange and specifically to the media. In order to achieve this, the PeerConnection must provide the

DTLS-SRTP fingerprint to be bound to the identity. This is provided as a JavaScript object (also

known as a dictionary or hash) with a single fingerprint key, as shown below:

The fingerprint value is an array of objects. Each object in the array contains algorithm and 

digest values, which correspond directly to the algorithm and digest values in the fingerprint

attribute of the SDP .

This object is encoded in a  string for passing to the IdP. The identity assertion

returned by the IdP, which is encoded in the identity attribute, is a JSON object that is encoded as

described in Section 7.4.1.

This structure does not need to be interpreted by the IdP or the IdP proxy. It is consumed solely by the

RP's browser. The IdP merely treats it as an opaque value to be attested to. Thus, new parameters can

be added to the assertion without modifying the IdP.

  {
    "fingerprint":
      [
        { "algorithm": "sha-256",
          "digest": "4A:AD:B9:B1:3F:...:E5:7C:AB" },
        { "algorithm": "sha-1",
          "digest": "74:E9:76:C8:19:...:F4:45:6B" }
      ]
  }

[RFC8122]

JSON [RFC8259]
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7.4.1. Carrying Identity Assertions 

Once an IdP has generated an assertion (see Section 7.6), it is attached to the SDP offer/answer

message. This is done by adding a new 'identity' attribute to the SDP. The sole contents of this value is

the identity assertion. The identity assertion produced by the IdP is encoded into a UTF-8 JSON text,

then  to produce this string. For example:

Note that long lines in the example are folded to meet the column width constraints of this document;

the backslash ("\") at the end of a line, the carriage return that follows, and whitespace shall be

ignored.

The 'identity' attribute attests to all fingerprint attributes in the session description. It is therefore a

session-level attribute.

Multiple fingerprint values can be used to offer alternative certificates for a peer. The identity

attribute  include all fingerprint values that are included in fingerprint attributes of the

session description.

The RP browser  verify that the in-use certificate for a DTLS connection is in the set of

fingerprints returned from the IdP when verifying an assertion.

Base64-encoded [RFC4648]

v=0
o=- 1181923068 1181923196 IN IP4 ua1.example.com
s=example1
c=IN IP4 ua1.example.com
a=fingerprint:sha-1 \
  4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB
a=identity:\
  eyJpZHAiOnsiZG9tYWluIjoiZXhhbXBsZS5vcmciLCJwcm90b2NvbCI6ImJvZ3Vz\
  In0sImFzc2VydGlvbiI6IntcImlkZW50aXR5XCI6XCJib2JAZXhhbXBsZS5vcmdc\
  IixcImNvbnRlbnRzXCI6XCJhYmNkZWZnaGlqa2xtbm9wcXJzdHV2d3l6XCIsXCJz\
  aWduYXR1cmVcIjpcIjAxMDIwMzA0MDUwNlwifSJ9
a=...
t=0 0
m=audio 6056 RTP/SAVP 0
a=sendrecv
...

MUST

MUST

7.5. Determining the IdP URI 

In order to ensure that the IdP is under control of the domain owner rather than someone who merely

has an account on the domain owner's server (e.g., in shared hosting scenarios), the IdP JavaScript is

hosted at a deterministic location based on the IdP's domain name. Each IdP proxy instance is

associated with two values:
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Authority:

protocol:

The  at which the IdP's service is hosted.  

The specific IdP protocol which the IdP is using. This is a completely opaque IdP-specific

string, but allows an IdP to implement two protocols in parallel. This value may be the empty

string. If no value for protocol is provided, a value of "default" is used.  

Each IdP  serve its initial entry page (i.e., the one loaded by the IdP proxy) from a 

. The well-known URI for an IdP proxy is formed from the following URI

components:

1. The scheme, "https:". An IdP  be loaded using .  

2. The . As noted above, the authority  contain a non-default port number

or userinfo sub-component. Both are removed when determining if an asserted identity matches

the name of the IdP.  

3. The path, starting with "/.well-known/idp-proxy/" and appended with the IdP protocol. Note that

the separator characters '/' (%2F) and '\' (%5C)  be permitted in the protocol field, lest

an attacker be able to direct requests outside of the controlled "/.well-known/" prefix. Query and

fragment values  be used by including '?' or '#' characters.  

For example, for the IdP "identity.example.com" and the protocol "example", the URL would be:

The IdP  redirect requests to this URL, but they  retain the "https" scheme. This changes

the effective origin of the IdP, but not the domain of the identities that the IdP is permitted to assert and

validate. I.e., the IdP is still regarded as authoritative for the original domain.

7.5.1. Authenticating Party 

How an AP determines the appropriate IdP domain is out of scope of this specification. In general,

however, the AP has some actual account relationship with the IdP, as this identity is what the IdP is

attesting to. Thus, the AP somehow supplies the IdP information to the browser. Some potential

mechanisms include:

• Provided by the user directly.  

• Selected from some set of IdPs known to the calling site. E.g., a button that shows "Authenticate

via Facebook Connect"  

authority [RFC3986]

MUST well-known

URI [RFC5785]

MUST HTTPS [RFC2818]

authority [RFC3986] MAY

MUST NOT

MAY

  https://identity.example.com/.well-known/idp-proxy/example
  

MAY MUST
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7.5.2. Relying Party 

Unlike the AP, the RP need not have any particular relationship with the IdP. Rather, it needs to be able

to process whatever assertion is provided by the AP. As the assertion contains the IdP's identity in the 

idp field of the JSON-encoded object (see Section 7.6), the URI can be constructed directly from the

assertion, and thus the RP can directly verify the technical validity of the assertion with no user

interaction. Authoritative assertions need only be verifiable. Third-party assertions also  be

verified against local policy, as described in Section 8.1.

MUST

idp:

assertion:

7.6. Requesting Assertions 

The input to identity assertion is the JSON-encoded object described in Section 7.4 that contains the

set of certificate fingerprints the browser intends to use. This string is treated as opaque from the

perspective of the IdP.

The browser also identifies the origin that the PeerConnection is run in, which allows the IdP to make

decisions based on who is requesting the assertion.

An application can optionally provide a user identifier hint when specifying an IdP. This value is a hint

that the IdP can use to select amongst multiple identities, or to avoid providing assertions for unwanted

identities. The username is a string that has no meaning to any entity other than the IdP, it can

contain any data the IdP needs in order to correctly generate an assertion.

An identity assertion that is successfully provided by the IdP consists of the following information:

The domain name of an IdP and the protocol string. This  identify a different IdP or

protocol from the one that generated the assertion.  

An opaque value containing the assertion itself. This is only interpretable by the identified

IdP or the IdP code running in the client.  

Figure 6 shows an example assertion formatted as JSON. In this case, the message has presumably

been digitally signed/MACed in some way that the IdP can later verify it, but this is an implementation

detail and out of scope of this document.

MAY

RFC 9999 WebRTC Sec. Arch. August 2019

Rescorla Standards Track Page 28



For use in signaling, the assertion is serialized into JSON, , and used as

the value of the identity attribute. IdPs  ensure that any assertions they generate cannot be

interpreted in a different context. E.g., they should use a distinct format or have separate cryptographic

keys for assertion generation and other purposes. Line breaks are inserted solely for readability.

Figure 6: Example assertion 

{
  "idp":{
    "domain": "example.org",
    "protocol": "bogus"
  },
  "assertion": "{\"identity\":\"bob@example.org\",
                 \"contents\":\"abcdefghijklmnopqrstuvwyz\",
                 \"signature\":\"010203040506\"}"
}

 

Base64-encoded [RFC4648]

SHOULD

7.7. Managing User Login 

In order to generate an identity assertion, the IdP needs proof of the user's identity. It is common

practice to authenticate users (using passwords or multi-factor authentication), then use 

 or  for subsequent exchanges.

The IdP proxy is able to access cookies, HTTP authentication or other persistent session data because

it operates in the security context of the IdP origin. Therefore, if a user is logged in, the IdP could have

all the information needed to generate an assertion.

An IdP proxy is unable to generate an assertion if the user is not logged in, or the IdP wants to interact

with the user to acquire more information before generating the assertion. If the IdP wants to interact

with the user before generating an assertion, the IdP proxy can fail to generate an assertion and instead

indicate a URL where login should proceed.

The application can then load the provided URL to enable the user to enter credentials. The

communication between the application and the IdP is described in .

Cookies

[RFC6265] HTTP authentication [RFC7617]

[webrtc-api]

8. Verifying Assertions 

The input to identity validation is the assertion string taken from a decoded 'identity' attribute.
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identity:

contents:

The IdP proxy verifies the assertion. Depending on the identity protocol, the proxy might contact the

IdP server or other servers. For instance, an OAuth-based protocol will likely require using the IdP as

an oracle, whereas with a signature-based scheme might be able to verify the assertion without

contacting the IdP, provided that it has cached the relevant public key.

Regardless of the mechanism, if verification succeeds, a successful response from the IdP proxy

consists of the following information:

The identity of the AP from the IdP's perspective. Details of this are provided in Section 8.1.

 

The original unmodified string provided by the AP as input to the assertion generation

process.  

Figure 7 shows an example response, which is JSON-formatted.

Figure 7: Example verification result 

{
  "identity": "bob@example.org",
  "contents": "{\"fingerprint\":[ ... ]}"
}

 

8.1. Identity Formats 

The identity provided from the IdP to the RP browser  consist of a string representing the user's

identity. This string is in the form "<user>@<domain>", where user consists of any character, and

domain is aninternationalized domain name  encoded as a sequence of U-labels.

The PeerConnection API  check this string as follows:

1. If the "domain" portion of the string is equal to the domain name of the IdP proxy, then the

assertion is valid, as the IdP is authoritative for this domain. Comparison of domain names is

done using the label equivalence rule defined in .  

2. If the "domain" portion of the string is not equal to the domain name of the IdP proxy, then the

PeerConnection object  reject the assertion unless both:

1. the IdP domain is trusted as an acceptable third-party IdP; and  

2. local policy is configured to trust this IdP domain for the domain portion of the identity string.  

MUST

[RFC5890]

MUST

Section 2.3.2.4 of [RFC5890]

MUST
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Any "@" or "%" characters in the "user" portion of the identity  be escaped according to the

"Percent-Encoding" rules defined in . Characters other than "@" and "%" 

 be percent-encoded. For example, with a "user" of "user@133" and a "domain" of

"identity.example.com", the resulting string will be encoded as "user%40133@identity.example.com".

Implementations are cautioned to take care when displaying user identities containing escaped "@"

characters. If such characters are unescaped prior to display, implementations  distinguish

between the domain of the IdP proxy and any domain that might be implied by the portion of the

"<user>" portion that appears after the escaped "@" sign.

MUST

Section 2.1 of [RFC3986]

MUST NOT

MUST

9. Security Considerations 

Much of the security analysis of this problem is contained in  or in the discussion of the

particular issues above. In order to avoid repetition, this section focuses on (a) residual threats that are

not addressed by this document and (b) threats produced by failure/misbehavior of one of the

components in the system.

9.1. Communications Security 

IF HTTPS is not used to secure communications to the signaling server, and the identity mechanism

used in Section 7 is not used, then any on-path attacker can replace the DTLS-SRTP fingerprints in the

handshake and thus substitute its own identity for that of either endpoint.

Even if HTTPS is used, the signaling server can potentially mount a man-in-the-middle attack unless

implementations have some mechanism for independently verifying keys. The UI requirements in 

Section 6.5 are designed to provide such a mechanism for motivated/security conscious users, but are

not suitable for general use. The identity service mechanisms in Section 7 are more suitable for general

use. Note, however, that a malicious signaling service can strip off any such identity assertions, though

it cannot forge new ones. Note that all of the third-party security mechanisms available (whether X.509

certificates or a third-party IdP) rely on the security of the third party--this is of course also true of the

user's connection to the Web site itself. Users who wish to assure themselves of security against a

malicious identity provider can only do so by verifying peer credentials directly, e.g., by checking the

peer's fingerprint against a value delivered out of band.

In order to protect against malicious content JavaScript, that JavaScript  be allowed to

have direct access to---or perform computations with---DTLS keys. For instance, if content JS were

able to compute digital signatures, then it would be possible for content JS to get an identity assertion

for a browser's generated key and then use that assertion plus a signature by the key to authenticate a

[RFC9998]

MUST NOT
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call protected under an ephemeral Diffie-Hellman (DH) key controlled by the content JS, thus

violating the security guarantees otherwise provided by the IdP mechanism. Note that it is not

sufficient merely to deny the content JS direct access to the keys, as some have suggested doing with

the WebCrypto API . The JS must also not be allowed to perform operations that would be

valid for a DTLS endpoint. By far the safest approach is simply to deny the ability to perform any

operations that depend on secret information associated with the key. Operations that depend on public

information, such as exporting the public key are of course safe.

9.2. Privacy 

The requirements in this document are intended to allow:

• Users to participate in calls without revealing their location.  

• Potential callees to avoid revealing their location and even presence status prior to agreeing to

answer a call.  

However, these privacy protections come at a performance cost in terms of using TURN relays and, in

the latter case, delaying ICE. Sites  make users aware of these tradeoffs.

Note that the protections provided here assume a non-malicious calling service. As the calling service

always knows the users status and (absent the use of a technology like Tor) their IP address, they can

violate the users privacy at will. Users who wish privacy against the calling sites they are using must

use separate privacy enhancing technologies such as Tor. Combined WebRTC/Tor implementations 

 arrange to route the media as well as the signaling through Tor. Currently this will produce

very suboptimal performance.

Additionally, any identifier which persists across multiple calls is potentially a problem for privacy,

especially for anonymous calling services. Such services  instruct the browser to use separate

DTLS keys for each call and also to use TURN throughout the call. Otherwise, the other side will learn

linkable information that would allow them to correlate the browser across multiple calls. Additionally,

browsers  implement the privacy-preserving CNAME generation mode of .

9.3. Denial of Service 

The consent mechanisms described in this document are intended to mitigate denial of service attacks

in which an attacker uses clients to send large amounts of traffic to a victim without the consent of the

victim. While these mechanisms are sufficient to protect victims who have not implemented WebRTC

at all, WebRTC implementations need to be more careful.

[webcrypto]

SHOULD

SHOULD

SHOULD

SHOULD [RFC7022]
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Consider the case of a call center which accepts calls via WebRTC. An attacker proxies the call

center's front-end and arranges for multiple clients to initiate calls to the call center. Note that this

requires user consent in many cases but because the data channel does not need consent, he can use

that directly. Since ICE will complete, browsers can then be induced to send large amounts of data to

the victim call center if it supports the data channel at all. Preventing this attack requires that

automated WebRTC implementations implement sensible flow control and have the ability to triage

out (i.e., stop responding to ICE probes on) calls which are behaving badly, and especially to be

prepared to remotely throttle the data channel in the absence of plausible audio and video (which the

attacker cannot control).

Another related attack is for the signaling service to swap the ICE candidates for the audio and video

streams, thus forcing a browser to send video to the sink that the other victim expects will contain

audio (perhaps it is only expecting audio!) potentially causing overload. Muxing multiple media flows

over a single transport makes it harder to individually suppress a single flow by denying ICE

keepalives. Either media-level (RTCP) mechanisms must be used or the implementation must deny

responses entirely, thus terminating the call.

Yet another attack, suggested by Magnus Westerlund, is for the attacker to cross-connect offers and

answers as follows. It induces the victim to make a call and then uses its control of other users

browsers to get them to attempt a call to someone. It then translates their offers into apparent answers

to the victim, which looks like large-scale parallel forking. The victim still responds to ICE responses

and now the browsers all try to send media to the victim. Implementations can defend themselves from

this attack by only responding to ICE Binding Requests for a limited number of remote ufrags (this is

the reason for the requirement that the JS not be able to control the ufrag and password).

 documents a number of potential RTCP-based DoS attacks and

countermeasures.

Note that attacks based on confusing one end or the other about consent are possible even in the face of

the third-party identity mechanism as long as major parts of the signaling messages are not signed. On

the other hand, signing the entire message severely restricts the capabilities of the calling application,

so there are difficult tradeoffs here.

9.4. IdP Authentication Mechanism 

This mechanism relies for its security on the IdP and on the PeerConnection correctly enforcing the

security invariants described above. At a high level, the IdP is attesting that the user identified in the

assertion wishes to be associated with the assertion. Thus, it must not be possible for arbitrary third

parties to get assertions tied to a user or to produce assertions that RPs will accept.

[RFC9994], Section 13
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9.4.3. Privacy of IdP-generated identities and the hosting site 

Depending on the structure of the IdP's assertions, the calling site may learn the user's identity from the

perspective of the IdP. In many cases this is not an issue because the user is authenticating to the site

via the IdP in any case, for instance when the user has logged in with Facebook Connect and is then

authenticating their call with a Facebook identity. However, in other case, the user may not have

already revealed their identity to the site. In general, IdPs  either verify that the user is

willing to have their identity revealed to the site (e.g., through the usual IdP permissions dialog) or

arrange that the identity information is only available to known RPs (e.g., social graph adjacencies) but

not to the calling site. The "domain" field of the assertion request can be used to check that the user has

agreed to disclose their identity to the calling site; because it is supplied by the PeerConnection it can

be trusted to be correct.

9.4.1. PeerConnection Origin Check 

Fundamentally, the IdP proxy is just a piece of HTML and JS loaded by the browser, so nothing stops

a Web attacker from creating their own IFRAME, loading the IdP proxy HTML/JS, and requesting a

signature over his own keys rather than those generated in the browser. However, that proxy would be

in the attacker's origin, not the IdP's origin. Only the browser itself can instantiate a context that (a) is

in the IdP's origin and (b) exposes the correct API surface. Thus, the IdP proxy on the sender's side 

 ensure that it is running in the IdP's origin prior to issuing assertions.

Note that this check only asserts that the browser (or some other entity with access to the user's

authentication data) attests to the request and hence to the fingerprint. It does not demonstrate that the

browser has access to the associated private key, and therefore an attacker can attach their own identity

to another party's keying material, thus making a call which comes from Alice appear to come from the

attacker. See  for defenses against this form of attack.

MUST

[RFC9997]

9.4.2. IdP Well-known URI 

As described in Section 7.5 the IdP proxy HTML/JS landing page is located at a well-known URI

based on the IdP's domain name. This requirement prevents an attacker who can write some resources

at the IdP (e.g., on one's Facebook wall) from being able to impersonate the IdP.

SHOULD

9.4.4. Security of Third-Party IdPs 

As discussed above, each third-party IdP represents a new universal trust point and therefore the

number of these IdPs needs to be quite limited. Most IdPs, even those which issue unqualified

identities such as Facebook, can be recast as authoritative IdPs (e.g., 123456@facebook.com).
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9.4.5. Web Security Feature Interactions 

A number of optional Web security features have the potential to cause issues for this mechanism, as

discussed below.

However, in such cases, the user interface implications are not entirely desirable. One intermediate

approach is to have special (potentially user configurable) UI for large authoritative IdPs, thus

allowing the user to instantly grasp that the call is being authenticated by Facebook, Google, etc.

9.4.4.1. Confusable Characters 

Because a broad range of characters are permitted in identity strings, it may be possible for attackers to

craft identities which are confusable with other identities (see  for more on this topic). This

is a problem with any identifier space of this type (e.g., e-mail addresses). Those minting identifers

should avoid mixed scripts and similar confusable characters. Those presenting these identifiers to a

user should consider highlighting cases of mixed script usage (see ). Other best

practices are still in development.

[RFC6943]

[RFC5890], Section 4.4

9.4.5.1. Popup Blocking 

When popup blocking is in use, the IdP proxy is unable to generate popup windows, dialogs or any

other form of user interactions. This prevents the IdP proxy from being used to circumvent user

interaction. The "LOGINNEEDED" message allows the IdP proxy to inform the calling site of a need

for user login, providing the information necessary to satisfy this requirement without resorting to

direct user interaction from the IdP proxy itself.

9.4.5.2. Third Party Cookies 

Some browsers allow users to block third party cookies (cookies associated with origins other than the

top level page) for privacy reasons. Any IdP which uses cookies to persist logins will be broken by

third-party cookie blocking. One option is to accept this as a limitation; another is to have the

PeerConnection object disable third-party cookie blocking for the IdP proxy.

Contact Name:

Attribute Name:

Long Form:

10. IANA Considerations 

This specification defines the identity SDP attribute per the procedures of 

. The required information for the registration is included here:

IESG (iesg@ietf.org)  

identity  

identity  

Section 8.2.4 of

[RFC4566]
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