Internet Engineering Task Force (IETF) H. Zhou

Request for Comments: 7170 N. Cam-Winget
Category: Standards Track J. Salowey
ISSN: 2070-1721 Cisco Systems
S. Hanna
Infineon Technologies
May 2014

Tunnel Extensible Authentication Protocol (TEAP) Version 1
Abstract

This document defines the Tunnel Extensible Authentication Protocol
(TEAP) version 1. TEAP is a tunnel-based EAP method that enables
secure communication between a peer and a server by using the
Transport Layer Security (TLS) protocol to establish a mutually
authenticated tunnel. Within the tunnel, TLV objects are used to
convey authentication-related data between the EAP peer and the EAP
server.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7170.

Zhou, et al. Standards Track [Page 1]

RFC 7170 TEAP May 2014

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 5
1.1. Specification Requirements 5
1.2. Terminologyt 6
2. ProtocolOverview 6
2.1. ArchitecturalModel 7
2.2. Protocol-LayeringModel 8
3. TEAP Protocol 9
3.1. Version Negotiation 9
3.2. TEAP Authentication Phase 1: Tunnel Establishment.... 10
3.2.1. TLS Session Resume Using Server State 11
3.2.2. TLS Session Resume Usinga PAC 12
3.2.3. Transition between Abbreviated and Full TLS Handshake 13
3.3. TEAP Authentication Phase 2: Tunneled Authentication .. 14
3.31. EAPSequences 14
3.3.2. Optional Password Authentication 15
3.3.3. Protected Termination and Acknowledged Result
Indication 15
3.4. Determining Peer-ld and Server-Id 16
3.5. TEAP Session ldentifier................. 17
3.6. ErrorHandling 17
3.6.1. Outer-LayerErrors 18
3.6.2. TLS LayerErrors 18
3.6.3. Phase2Errors 19
3.7. Fragmentation 19
3.8. PeerServices 20
3.8.1. PAC Provisioning 21
3.8.2. Certificate Provisioning within the Tunnel 22
3.8.3. Server Unauthenticated Provisioning Mode 23
3.8.4. ChannelBinding 23

Zhou, et al. Standards Track [Page 2]

RFC 7170 TEAP May 2014

4. MessageFormats 24
4.1. TEAP Message Format 24
4.2. TEAP TLV Format and Support. 26
4.2.1. General TLVFormat 28
4.2.2. Authority-IDTLV 29
4.2.3. Identity-Type TLV 30
424, Result TLV 31
425 NAKTLV 32
42.6. ErrorTLV oo 33
4.2.7. Channel-Binding TLV 36
4.2.8. Vendor-Specific TLV 37
4.2.9. Request-Action TLV 38
4.2.10. EAP-Payload TLV 40
4.2.11. Intermediate-Result TLV 41
4212. PACTLVFormat 42
4.2.12.1. Formats for PAC Attributes 43
42122 PAC-Keyt 44
42.123. PAC-Opaquecovuun.. 44
42124, PAC-Info...... 45
4.2.12.5. PAC-Acknowledgement TLV 47
4.2.12.6. PAC-Type TLV 48
4.2.13. Crypto-Binding TLV 48
4.2.14. Basic-Password-Auth-Req TLV 51
4.2.15. Basic-Password-Auth-Resp TLV 52
4216. PKCSH#TTLV i 53
4.217. PKCSH#IOTLV ... oo 54
4.2.18. Trusted-Server-Root TLV 55
43. TLVRules oot 56
43.1. OuterTLVS, 57
43.2. InnerTLVs 57
5. Cryptographic Calculations 58
5.1. TEAP Authentication Phase 1: Key Derivations

5.2. Intermediate Compound Key Derivations 59

5.3. Computing the Compound MAC 61
5.4. EAP Master Session Key Generation. 61
6. IANA Considerations 62
7. Security Considerations 66

7.1. Mutual Authentication and Integrity Protection 67

7.2. Method Negotiation 67

7.3. Separation of Phase 1 and Phase 2 Servers......... 67

7.4. Mitigation of Known Vulnerabilities and Protocol
Deficiencies 68
7.4.1. User ldentity Protection and Verification 69
7.4.2. Dictionary Attack Resistance 70

7.4.3. Protection against Man-in-the-Middle Attacks 70

7.4.4. PAC Binding to User Identity 71

Zhou, et al. Standards Track [Page 3]

RFC 7170 TEAP May 2014

7.5. Protecting against Forged Cleartext EAP Packets 71
7.6. Server Certificate Validation.............. 72
7.7. Tunnel PAC Considerations 72
7.8. SecurityClaims 73
8. Acknowledgements 74
9. References 75
9.1. Normative References 75
9.2. Informative References 76
Appendix A. Evaluation against Tunnel-Based EAP Method
Requirements 79
A.1l. Requirement 4.1.1: RFC Compliance 79
A.2. Requirement 4.2.1: TLS Requirements 79
A.3. Requirement 4.2.1.1.1: Ciphersuite Negotiation 79

A.4. Requirement 4.2.1.1.2: Tunnel Data Protection Algorithms 79
A.5. Requirement 4.2.1.1.3: Tunnel Authentication and Key

Establishment...................... 79
A.6. Requirement 4.2.1.2: Tunnel Replay Protection 79
A.7. Requirement 4.2.1.3: TLS Extensions 80
A.8. Requirement 4.2.1.4: Peer Identity Privacy 80
A.9. Requirement 4.2.1.5: Session Resumption......... 80
A.10. Requirement 4.2.2: Fragmentation 80
A.11. Requirement 4.2.3: Protection of Data External to Tunnel 80
A.12. Requirement 4.3.1: Extensible Attribute Types 80

A.13. Requirement 4.3.2: Request/Challenge Response Operation . 80
A.14. Requirement 4.3.3: Indicating Criticality of Attributes . 80
A.15. Requirement 4.3.4: Vendor-Specific Support 81
A.16. Requirement 4.3.5: Result Indication 81
A.17. Requirement 4.3.6: Internationalization of Display
Strings 81
A.18. Requirement 4.4; EAP Channel-Binding Requirements 81
A.19. Requirement 4.5.1.1: Confidentiality and Integrity ... 81
A.20. Requirement 4.5.1.2: Authentication of Server 81
A.21. Requirement 4.5.1.3: Server Certificate Revocation
Checking 81
A.22. Requirement 4.5.2: Internationalization 81
A.23. Requirement4.5.3: Metadata 82
A.24. Requirement 4.5.4: Password Change 82
A.25. Requirement 4.6.1: Method Negotiation 82
A.26. Requirement 4.6.2: Chained Methods 82
A.27. Requirement 4.6.3: Cryptographic Binding with the TLS
Tunnel 82
A.28. Requirement 4.6.4: Peer-Initiated EAP Authentication .. 82
A.29. Requirement 4.6.5: Method Metadata 82
Appendix B. Major Differences from EAP-FAST 83
Appendix C. Examples 83
C.1. Successful Authentication 83
C.2. Failed Authentication 85
C.3. Full TLS Handshake Using Certificate-Based Ciphersuite . 86

Zhou, et al. Standards Track [Page 4]

RFC 7170 TEAP May 2014

C.4. Client Authentication during Phase 1 with Identity

Privacyo 88
C.5. Fragmentation and Reassembly 89
C.6. Sequence of EAP Methods 91
C.7. Failed Crypto-Binding 94

C.8. Sequence of EAP Method with Vendor-Specific TLV Exchange 95
C.9. Peer Requests Inner Method after Server Sends Result TLV 97
C.10. Channel Binding 99

1. Introduction

A tunnel-based Extensible Authentication Protocol (EAP) method is an
EAP method that establishes a secure tunnel and executes other EAP
methods under the protection of that secure tunnel. A tunnel-based
EAP method can be used in any lower-layer protocol that supports EAP
authentication. There are several existing tunnel-based EAP methods
that use Transport Layer Security (TLS) [RFC5246] to establish the
secure tunnel. EAP methods supporting this include Protected EAP
(PEAP) [PEAP], EAP Tunneled Transport Layer Security (EAP-TTLS)
[RFC5281], and EAP Flexible Authentication via Secure Tunneling (EAP-
FAST) [RFC4851]. However, they all are either vendor-specific or
informational, and the industry calls for a Standards Track tunnel-
based EAP method. [RFC6678] outlines the list of requirements for a
standard tunnel-based EAP method.

Since its introduction, EAP-FAST [RFC4851] has been widely adopted in

a variety of devices and platforms. It has been adopted by the EMU

working group as the basis for the standard tunnel-based EAP method.

This document describes the Tunnel Extensible Authentication Protocol
(TEAP) version 1, based on EAP-FAST [RFC4851] with some minor changes
to meet the requirements outlined in [RFC6678] for a standard tunnel-

based EAP method.

1.1. Specification Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in
[RFC2119].

Zhou, et al. Standards Track [Page 5]

RFC 7170 TEAP May 2014

1.2. Terminology

Much of the terminology in this document comes from [RFC3748].
Additional terms are defined below:

Protected Access Credential (PAC)

Credentials distributed to a peer for future optimized network
authentication. The PAC consists of a minimum of two components:
a shared secret and an opaque element. The shared secret
component contains the pre-shared key between the peer and the
authentication server. The opaque part is provided to the peer

and is presented to the authentication server when the peer wishes
to obtain access to network resources. The opague element and
shared secret are used with TLS stateless session resumption
defined in [RFC5077] to establish a protected TLS session. The
secret key and opaque part may be distributed using [RFC5077]
messages or using TLVs within the TEAP tunnel. Finally, a PAC may
optionally include other information that may be useful to the

peer.

Type-Length-Value (TLV)

The TEAP protocol utilizes objects in TLV format. The TLV format
is defined in Section 4.2.

2. Protocol Overview

TEAP authentication occurs in two phases after the initial EAP

Identity request/response exchange. In the first phase, TEAP employs
the TLS [RFC5246] handshake to provide an authenticated key exchange
and to establish a protected tunnel. Once the tunnel is established,

the second phase begins with the peer and server engaging in further
conversations to establish the required authentication and

authorization policies. TEAP makes use of TLV objects to carry out

the inner authentication, results, and other information, such as
channel-binding information.

TEAP makes use of the TLS SessionTicket extension [RFC5077], which
supports TLS session resumption without requiring session-specific

state stored at the server. In this document, the SessionTicket is

referred to as the Protected Access Credential opaque data (or PAC-
Opaque). The PAC-Opaque may be distributed through the use of the
NewSessionTicket message or through a mechanism that uses TLVs within
Phase 2 of TEAP. The secret key used to resume the session in TEAP

is referred to as the Protected Access Credential key (or PAC-Key).

When the NewSessionTicket message is used to distribute the PAC-
Opaque, the PAC-Key is the master secret for the session. If TEAP

Zhou, et al. Standards Track [Page 6]

RFC 7170 TEAP May 2014

Phase 2 is used to distribute the PAC-Opaque, then the PAC-Key is
distributed along with the PAC-Opaque. TEAP implementations MUST
support the [RFC5077] mechanism for distributing a PAC-Opaque, and it
is RECOMMENDED that implementations support the capability to
distribute the ticket and secret key within the TEAP tunnel.

The TEAP conversation is used to establish or resume an existing
session to typically establish network connectivity between a peer

and the network. Upon successful execution of TEAP, the EAP peer and
EAP server both derive strong session key material that can then be
communicated to the network access server (NAS) for use in
establishing a link-layer security association.

2.1. Architectural Model

The network architectural model for TEAP usage is shown below:

+ + + + o+ + 4+ +
I | | | | Inner |

| Peer |<---->| Authen-|<---->| TEAP |<---->| Method |
| | | ticator| | server | | server |

I I | I

S + + + + + S +

TEAP Architectural Model

The entities depicted above are logical entities and may or may not
correspond to separate network components. For example, the TEAP
server and inner method server might be a single entity; the
authenticator and TEAP server might be a single entity; or the
functions of the authenticator, TEAP server, and inner method server
might be combined into a single physical device. For example,

typical IEEE 802.11 deployments place the authenticator in an access
point (AP) while a RADIUS server may provide the TEAP and inner
method server components. The above diagram illustrates the division
of labor among entities in a general manner and shows how a
distributed system might be constructed; however, actual systems
might be realized more simply. The security considerations in

Section 7.3 provide an additional discussion of the implications of
separating the TEAP server from the inner method server.

Zhou, et al. Standards Track [Page 7]

RFC 7170 TEAP May 2014

2.2. Protocol-Layering Model

TEAP packets are encapsulated within EAP; EAP in turn requires a
transport protocol. TEAP packets encapsulate TLS, which is then used
to encapsulate user authentication information. Thus, TEAP messaging
can be described using a layered model, where each layer encapsulates
the layer above it. The following diagram clarifies the relationship
between protocols:

Inner EAP Method | Other TLV information |

I
TLV Encapsulation (TLVS) |

I
TLS | Optional Outer TLVs |

EAP |

I
I
I
I
I
I
| TEAP |
I
I
I
I

I
Carrier Protocol (EAP over LAN, RADIUS, Diameter, etc.) |

Protocol-Layering Model

The TLV layer is a payload with TLV objects as defined in

Section 4.2. The TLV objects are used to carry arbitrary parameters
between an EAP peer and an EAP server. All conversations in the TEAP
protected tunnel are encapsulated in a TLV layer.

TEAP packets may include TLVs both inside and outside the TLS tunnel.
The term "Outer TLVS" is used to refer to optional TLVs outside the

TLS tunnel, which are only allowed in the first two messages in the
TEAP protocol. That is the first EAP-server-to-peer message and

first peer-to-EAP-server message. If the message is fragmented, the
whole set of messages is counted as one message. The term "Inner
TLVs" is used to refer to TLVs sent within the TLS tunnel. In TEAP
Phase 1, Outer TLVs are used to help establish the TLS tunnel, but no
Inner TLVs are used. In Phase 2 of the TEAP conversation, TLS
records may encapsulate zero or more Inner TLVs, but no Outer TLVs.

Methods for encapsulating EAP within carrier protocols are already
defined. For example, IEEE 802.1X [IEEE.802-1X.2013] may be used to
transport EAP between the peer and the authenticator; RADIUS
[RFC3579] or Diameter [RFC4072] may be used to transport EAP between
the authenticator and the EAP server.

Zhou, et al. Standards Track [Page 8]

RFC 7170 TEAP May 2014

3. TEAP Protocol

The operation of the protocol, including Phase 1 and Phase 2, is the
topic of this section. The format of TEAP messages is given in
Section 4, and the cryptographic calculations are given in Section 5.

3.1. Version Negotiation

TEAP packets contain a 3-bit Version field, following the TLS Flags
field, which enables future TEAP implementations to be backward
compatible with previous versions of the protocol. This

specification documents the TEAP version 1 protocol; implementations
of this specification MUST use a Version field set to 1.

Version negotiation proceeds as follows:

1. Inthe first EAP-Request sent with EAP type=TEAP, the EAP server
MUST set the Version field to the highest version it supports.

2a. If the EAP peer supports this version of the protocol, it
responds with an EAP-Response of EAP type=TEAP, including the
version number proposed by the TEAP server.

2b. If the TEAP peer does not support the proposed version but
supports a lower version, it responds with an EAP-Response of
EAP type=TEAP and sets the Version field to its highest
supported version.

2c. If the TEAP peer only supports versions higher than the version
proposed by the TEAP server, then use of TEAP will not be
possible. In this case, the TEAP peer sends back an EAP-Nak
either to negotiate a different EAP type or to indicate no other
EAP types are available.

3a. If the TEAP server does not support the version number proposed
by the TEAP peer, it MUST either terminate the conversation with
an EAP Failure or negotiate a new EAP type.

3b. If the TEAP server does support the version proposed by the TEAP
peer, then the conversation continues using the version proposed
by the TEAP peer.

The version negotiation procedure guarantees that the TEAP peer and
server will agree to the latest version supported by both parties.

If version negotiation fails, then use of TEAP will not be possible,

and another mutually acceptable EAP method will need to be negotiated
if authentication is to proceed.

Zhou, et al. Standards Track [Page 9]

RFC 7170 TEAP May 2014

The TEAP version is not protected by TLS and hence can be modified in
transit. In order to detect a modification of the TEAP version, the

peers MUST exchange the TEAP version number received during version
negotiation using the Crypto-Binding TLV described in Section 4.2.13.
The receiver of the Crypto-Binding TLV MUST verify that the version
received in the Crypto-Binding TLV matches the version sent by the
receiver in the TEAP version negotiation. If the Crypto-Binding TLV

fails to be validated, then it is a fatal error and is handled as

described in Section 3.6.3.

3.2. TEAP Authentication Phase 1: Tunnel Establishment

TEAP relies on the TLS handshake [RFC5246] to establish an
authenticated and protected tunnel. The TLS version offered by the
peer and server MUST be TLS version 1.2 [RFC5246] or later. This
version of the TEAP implementation MUST support the following TLS
ciphersuites:

TLS_RSA WITH_AES_128 CBC_SHA [RFC5246]
TLS_DHE_RSA_WITH_AES_128 CBC_SHA [RFC5246]

This version of the TEAP implementation SHOULD support the following
TLS ciphersuite:

TLS_RSA WITH_AES 256 _CBC_SHA [RFC5246]

Other ciphersuites MAY be supported. It is REQUIRED that anonymous
ciphersuites such as TLS_DH_anon_WITH_AES_ 128 CBC_SHA [RFC5246] only
be used in the case when the inner authentication method provides
mutual authentication, key generation, and resistance to man-in-the-
middle and dictionary attacks. TLS ciphersuites that do not provide
confidentiality MUST NOT be used. During the TEAP Phase 1
conversation, the TEAP endpoints MAY negotiate TLS compression.
During TLS tunnel establishment, TLS extensions MAY be used. For
instance, the Certificate Status Request extension [RFC6066] and the
Multiple Certificate Status Request extension [RFC6961] can be used

to leverage a certificate-status protocol such as Online Certificate

Status Protocol (OCSP) [RFC6960] to check the validity of server
certificates. TLS renegotiation indications defined in RFC 5746
[RFC5746] MUST be supported.

The EAP server initiates the TEAP conversation with an EAP request
containing a TEAP/Start packet. This packet includes a set Start (S)
bit, the TEAP version as specified in Section 3.1, and an authority
identity TLV. The TLS payload in the initial packet is empty. The
authority identity TLV (Authority-ID TLV) is used to provide the peer
a hint of the server’s identity that may be useful in helping the

Zhou, et al. Standards Track [Page 10]

RFC 7170 TEAP May 2014

peer select the appropriate credential to use. Assuming that the

peer supports TEAP, the conversation continues with the peer sending

an EAP-Response packet with EAP type of TEAP with the Start (S) bit
clear and the version as specified in Section 3.1. This message
encapsulates one or more TLS handshake messages. If the TEAP version
negotiation is successful, then the TEAP conversation continues until

the EAP server and EAP peer are ready to enter Phase 2. When the

full TLS handshake is performed, then the first payload of TEAP Phase

2 MAY be sent along with a server-finished handshake message to

reduce the number of round trips.

TEAP implementations MUST support mutual peer authentication during
tunnel establishment using the TLS ciphersuites specified in this
section. The TEAP peer does not need to authenticate as part of the
TLS exchange but can alternatively be authenticated through

additional exchanges carried out in Phase 2.

The TEAP tunnel protects peer identity information exchanged during
Phase 2 from disclosure outside the tunnel. Implementations that

wish to provide identity privacy for the peer identity need to

carefully consider what information is disclosed outside the tunnel

prior to Phase 2. TEAP implementations SHOULD support the immediate
renegotiation of a TLS session to initiate a new handshake message
exchange under the protection of the current ciphersuite. This

allows support for protection of the peer’s identity when using TLS

client authentication. An example of the exchanges using TLS
renegotiation to protect privacy is shown in Appendix C.

The following sections describe resuming a TLS session based on
server-side or client-side state.

3.2.1. TLS Session Resume Using Server State

TEAP session resumption is achieved in the same manner TLS achieves
session resume. To support session resumption, the server and peer
minimally cache the Session ID, master secret, and ciphersuite. The
peer attempts to resume a session by including a valid Session ID

from a previous TLS handshake in its ClientHello message. If the
server finds a match for the Session ID and is willing to establish a

new connection using the specified session state, the server will
respond with the same Session ID and proceed with the TEAP Phase 1
tunnel establishment based on a TLS abbreviated handshake. After a
successful conclusion of the TEAP Phase 1 conversation, the
conversation then continues on to Phase 2.

Zhou, et al. Standards Track [Page 11]

RFC 7170 TEAP May 2014

3.2.2. TLS Session Resume Using a PAC

TEAP supports the resumption of sessions based on server state being
stored on the client side using the TLS SessionTicket extension
techniques described in [RFC5077]. This version of TEAP supports the
provisioning of a ticket called a Protected Access Credential (PAC)
through the use of the NewSessionTicket handshake described in
[RFC5077], as well as provisioning of a PAC inside the protected
tunnel. Implementations MUST support the TLS Ticket extension
[RFC5077] mechanism for distributing a PAC and may provide additional
ways to provision the PAC, such as manual configuration. Since the
PAC mentioned here is used for establishing the TLS tunnel, it is

more specifically referred to as the Tunnel PAC. The Tunnel PAC is a
security credential provided by the EAP server to a peer and

comprised of:

1. PAC-Key: this is the key used by the peer as the TLS master
secret to establish the TEAP Phase 1 tunnel. The PAC-Key is a
strong, high-entropy, at minimum 48-octet key and is typically
the master secret from a previous TLS session. The PAC-Key is a
secret and MUST be treated accordingly. Otherwise, if leaked, it
could lead to user credentials being compromised if sent within
the tunnel established using the PAC-Key. In the case that a
PAC-Key is provisioned to the peer through another means, it MUST
have its confidentiality and integrity protected by a mechanism,
such as the TEAP Phase 2 tunnel. The PAC-Key MUST be stored
securely by the peer.

2. PAC-Opaque: this is a variable-length field containing the ticket
that is sent to the EAP server during the TEAP Phase 1 tunnel
establishment based on [RFC5077]. The PAC-Opaque can only be
interpreted by the EAP server to recover the required information
for the server to validate the peer’s identity and
authentication. The PAC-Opaque includes the PAC-Key and other
TLS session parameters. It may contain the PAC’s peer identity.
The PAC-Opaque format and contents are specific to the PAC
issuing server. The PAC-Opaque may be presented in the clear, so
an attacker MUST NOT be able to gain useful information from the
PAC-Opaque itself. The server issuing the PAC-Opaque needs to
ensure it is protected with strong cryptographic keys and
algorithms. The PAC-Opaque may be distributed using the
NewSessionTicket message defined in [RFC5077], or it may be
distributed through another mechanism such as the Phase 2 TLVs
defined in this document.

Zhou, et al. Standards Track [Page 12]

RFC 7170 TEAP May 2014

3. PAC-Info: this is an optional variable-length field used to
provide, at a minimum, the authority identity of the PAC issuer.
Other useful but not mandatory information, such as the PAC-Key
lifetime, may also be conveyed by the PAC-issuing server to the
peer during PAC provisioning or refreshment. PAC-Info is not
included if the NewSessionTicket message is used to provision the
PAC.

The use of the PAC is based on the SessionTicket extension defined in
[RFC5077]. The EAP server initiates the TEAP conversation as normal.
Upon receiving the Authority-ID TLV from the server, the peer checks
to see if it has an existing valid PAC-Key and PAC-Opaque for the
server. If it does, then it obtains the PAC-Opaque and puts it in

the SessionTicket extension in the ClientHello. Itis RECOMMENDED in
TEAP that the peer include an empty Session ID in a ClientHello
containing a PAC-Opaque. This version of TEAP supports the
NewSessionTicket Handshake message as described in [RFC5077] for
distribution of a new PAC, as well as the provisioning of PAC inside

the protected tunnel. If the PAC-Opaque included in the

SessionTicket extension is valid and the EAP server permits the
abbreviated TLS handshake, it will select the ciphersuite from
information within the PAC-Opaque and finish with the abbreviated TLS
handshake. If the server receives a Session ID and a PAC-Opaque in
the SessionTicket extension in a ClientHello, it should place the

same Session ID in the ServerHello if it is resuming a session based
on the PAC-Opaque. The conversation then proceeds as described in
[RFC5077] until the handshake completes or a fatal error occurs.

After the abbreviated handshake completes, the peer and the server
are ready to commence Phase 2.

3.2.3. Transition between Abbreviated and Full TLS Handshake

If session resumption based on server-side or client-side state

fails, the server can gracefully fall back to a full TLS handshake.

If the ServerHello received by the peer contains an empty Session ID
or a Session ID that is different than in the ClientHello, the server
may fall back to a full handshake. The peer can distinguish the
server’s intent to negotiate a full or abbreviated TLS handshake by
checking the next TLS handshake messages in the server response to
the ClientHello. If ChangeCipherSpec follows the ServerHello in
response to the ClientHello, then the server has accepted the session
resumption and intends to negotiate the abbreviated handshake.
Otherwise, the server intends to negotiate the full TLS handshake. A
peer can request that a new PAC be provisioned after the full TLS
handshake and mutual authentication of the peer and the server. A
peer SHOULD NOT request that a new PAC be provisioned after the
abbreviated handshake, as requesting a new session ticket based on
resumed session is not permitted. In order to facilitate the

Zhou, et al. Standards Track [Page 13]

RFC 7170 TEAP May 2014

fallback to a full handshake, the peer SHOULD include ciphersuites
that allow for a full handshake and possibly PAC provisioning so the
server can select one of these in case session resumption fails. An
example of the transition is shown in Appendix C.

3.3. TEAP Authentication Phase 2: Tunneled Authentication

The second portion of the TEAP authentication occurs immediately
after successful completion of Phase 1. Phase 2 occurs even if both
peer and authenticator are authenticated in the Phase 1 TLS
negotiation. Phase 2 MUST NOT occur if the Phase 1 TLS handshake
fails, as that will compromise the security as the tunnel has not

been established successfully. Phase 2 consists of a series of

requests and responses encapsulated in TLV objects defined in

Section 4.2. Phase 2 MUST always end with a Crypto-Binding TLV
exchange described in Section 4.2.13 and a protected termination
exchange described in Section 3.3.3. The TLV exchange may include
the execution of zero or more EAP methods within the protected tunnel
as described in Section 3.3.1. A server MAY proceed directly to the
protected termination exchange if it does not wish to request further
authentication from the peer. However, the peer and server MUST NOT
assume that either will skip inner EAP methods or other TLV
exchanges, as the other peer might have a different security policy.

The peer may have roamed to a network that requires conformance with
a different authentication policy, or the peer may request the server
take additional action (e.g., channel binding) through the use of the
Request-Action TLV as defined in Section 4.2.9.

3.3.1. EAP Sequences

EAP [RFC3748] prohibits use of multiple authentication methods within
a single EAP conversation in order to limit vulnerabilities to man-
in-the-middle attacks. TEAP addresses man-in-the-middle attacks
through support for cryptographic protection of the inner EAP
exchange and cryptographic binding of the inner authentication
method(s) to the protected tunnel. EAP methods are executed serially
in a sequence. This version of TEAP does not support initiating
multiple EAP methods simultaneously in parallel. The methods need
not be distinct. For example, EAP-TLS could be run twice as an inner
method, first using machine credentials followed by a second instance
using user credentials.

EAP method messages are carried within EAP-Payload TLVs defined in
Section 4.2.10. If more than one method is going to be executed in

the tunnel, then upon method completion, the server MUST send an
Intermediate-Result TLV indicating the result. The peer MUST respond

to the Intermediate-Result TLV indicating its result. If the result

indicates success, the Intermediate-Result TLV MUST be accompanied by

Zhou, et al. Standards Track [Page 14]

RFC 7170 TEAP May 2014

a Crypto-Binding TLV. The Crypto-Binding TLV is further discussed in
Sections 4.2.13 and 5.3. The Intermediate-Result TLVs can be

included with other TLVs such as EAP-Payload TLVs starting a new EAP
conversation or with the Result TLV used in the protected termination
exchange.

If both peer and server indicate success, then the method is
considered complete. If either indicates failure, then the method is
considered failed. The result of failure of an EAP method does not
always imply a failure of the overall authentication. If one
authentication method fails, the server may attempt to authenticate
the peer with a different method.

3.3.2. Optional Password Authentication

The use of EAP-FAST-GTC as defined in RFC 5421 [RFC5421] is NOT
RECOMMENDED with TEAPv1 because EAP-FAST-GTC is not compliant with
EAP-GTC defined in [RFC3748]. Implementations should instead make
use of the password authentication TLVs defined in this

specification. The authentication server initiates password
authentication by sending a Basic-Password-Auth-Req TLV defined in
Section 4.2.14. If the peer wishes to participate in password
authentication, then it responds with a Basic-Password-Auth-Resp TLV
as defined in Section 4.2.15 that contains the username and password.
If it does not wish to perform password authentication, then it

responds with a NAK TLV indicating the rejection of the Basic-
Password-Auth-Req TLV. Upon receiving the response, the server
indicates the success or failure of the exchange using an
Intermediate-Result TLV. Multiple round trips of password
authentication requests and responses MAY be used to support some
"housecleaning" functions such as a password or pin change before a
user is authenticated.

3.3.3. Protected Termination and Acknowledged Result Indication

A successful TEAP Phase 2 conversation MUST always end in a
successful Crypto-Binding TLV and Result TLV exchange. A TEAP server
may initiate the Crypto-Binding TLV and Result TLV exchange without
initiating any EAP conversation in TEAP Phase 2. After the final

Result TLV exchange, the TLS tunnel is terminated, and a cleartext

EAP Success or EAP Failure is sent by the server. Peers implementing
TEAP MUST NOT accept a cleartext EAP Success or failure packet prior
to the peer and server reaching synchronized protected result

indication.

The Crypto-Binding TLV exchange is used to prove that both the peer

and server participated in the tunnel establishment and sequence of
authentications. It also provides verification of the TEAP type,

Zhou, et al. Standards Track [Page 15]

RFC 7170 TEAP May 2014

version negotiated, and Outer TLVs exchanged before the TLS tunnel
establishment. The Crypto-Binding TLV MUST be exchanged and verified
before the final Result TLV exchange, regardless of whether or not

there is an inner EAP method authentication. The Crypto-Binding TLV
and Intermediate-Result TLV MUST be included to perform cryptographic
binding after each successful EAP method in a sequence of one or more
EAP methods. The server may send the final Result TLV along with an
Intermediate-Result TLV and a Crypto-Binding TLV to indicate its
intention to end the conversation. If the peer requires nothing more

from the server, it will respond with a Result TLV indicating success
accompanied by a Crypto-Binding TLV and Intermediate-Result TLV if
necessary. The server then tears down the tunnel and sends a

cleartext EAP Success or EAP Failure.

If the peer receives a Result TLV indicating success from the server,
but its authentication policies are not satisfied (for example, it

requires a particular authentication mechanism be run or it wants to
request a PAC), it may request further action from the server using

the Request-Action TLV. The Request-Action TLV is sent with a Status
field indicating what EAP Success/Failure result the peer would

expect if the requested action is not granted. The value of the

Action field indicates what the peer would like to do next. The

format and values for the Request-Action TLV are defined in

Section 4.2.9.

Upon receiving the Request-Action TLV, the server may process the
request or ignore it, based on its policy. If the server ignores the
request, it proceeds with termination of the tunnel and sends the
cleartext EAP Success or Failure message based on the Status field of
the peer’'s Request-Action TLV. If the server honors and processes
the request, it continues with the requested action. The

conversation completes with a Result TLV exchange. The Result TLV
may be included with the TLV that completes the requested action.

Error handling for Phase 2 is discussed in Section 3.6.3.
3.4. Determining Peer-ld and Server-Id

The Peer-Id and Server-ld [RFC5247] may be determined based on the
types of credentials used during either the TEAP tunnel creation or
authentication. In the case of multiple peer authentications, all
authenticated peer identities and their corresponding identity types
(Section 4.2.3) need to be exported. In the case of multiple server
authentications, all authenticated server identities need to be

exported.

Zhou, et al. Standards Track [Page 16]

RFC 7170 TEAP May 2014

When X.509 certificates are used for peer authentication, the Peer-Id
is determined by the subject and subjectAltName fields in the peer
certificate. As noted in [RFC5280]:

The subject field identifies the entity associated with the public

key stored in the subject public key field. The subject name MAY

be carried in the subject field and/or the subjectAltName

extension. . . . If subject naming information is present only in

the subjectAltName extension (e.g., a key bound only to an email
address or URI), then the subject name MUST be an empty sequence
and the subjectAltName extension MUST be critical.

Where it is non-empty, the subject field MUST contain an X.500
distinguished name (DN).

If an inner EAP method is run, then the Peer-Id is obtained from the
inner method.

When the server uses an X.509 certificate to establish the TLS
tunnel, the Server-1d is determined in a similar fashion as stated
above for the Peer-Id, e.g., the subject and subjectAltName fields in
the server certificate define the Server-Id.
3.5. TEAP Session Identifier

The EAP session identifier [RFC5247] is constructed using the tls-
unique from the Phase 1 outer tunnel at the beginning of Phase 2 as
defined by Section 3.1 of [RFC5929]. The Session-1d is defined as
follows:

Session-ld = teap_type || tls-unique

where teap_type is the EAP Type assigned to TEAP

tls-unique = tls-unique from the Phase 1 outer tunnel at the
beginning of Phase 2 as defined by Section 3.1 of [RFC5929]

|| means concatenation
3.6. Error Handling
TEAP uses the error-handling rules summarized below:

1. Errors in the outer EAP packet layer are handled as defined in
Section 3.6.1.

2. Errors in the TLS layer are communicated via TLS alert messages
in all phases of TEAP.

Zhou, et al. Standards Track [Page 17]

RFC 7170 TEAP May 2014

3. The Intermediate-Result TLVs carry success or failure indications
of the individual EAP methods in TEAP Phase 2. Errors within the
EAP conversation in Phase 2 are expected to be handled by
individual EAP methods.

4. Violations of the Inner TLV rules are handled using Result TLVs
together with Error TLVs.

5. Tunnel-compromised errors (errors caused by a failed or missing
Crypto-Binding) are handled using Result TLVs and Error TLVS.

3.6.1. Outer-Layer Errors

Errors on the TEAP outer-packet layer are handled in the following
ways:

1. If Outer TLVs are invalid or contain unknown values, they will be
ignored.

2. The entire TEAP packet will be ignored if other fields (version,
length, flags, etc.) are inconsistent with this specification.

3.6.2. TLS Layer Errors

If the TEAP server detects an error at any point in the TLS handshake

or the TLS layer, the server SHOULD send a TEAP request encapsulating
a TLS record containing the appropriate TLS alert message rather than
immediately terminating the conversation so as to allow the peer to

inform the user of the cause of the failure and possibly allow for a

restart of the conversation. The peer MUST send a TEAP response to

an alert message. The EAP-Response packet sent by the peer may
encapsulate a TLS ClientHello handshake message, in which case the
TEAP server MAY allow the TEAP conversation to be restarted, or it

MAY contain a TEAP response with a zero-length message, in which case
the server MUST terminate the conversation with an EAP Failure

packet. Itis up to the TEAP server whether or not to allow

restarts, and, if allowed, how many times the conversation can be
restarted. Per TLS [RFC5246], TLS restart is only allowed for non-

fatal alerts. A TEAP server implementing restart capability SHOULD
impose a limit on the number of restarts, so as to protect against
denial-of-service attacks. If the TEAP server does not allow

restarts, it MUST terminate the conversation with an EAP Failure

packet.

If the TEAP peer detects an error at any point in the TLS layer, the

TEAP peer SHOULD send a TEAP response encapsulating a TLS record
containing the appropriate TLS alert message. The server may restart
the conversation by sending a TEAP request packet encapsulating the

Zhou, et al. Standards Track [Page 18]

RFC 7170 TEAP May 2014

TLS HelloRequest handshake message. The peer may allow the TEAP
conversation to be restarted, or it may terminate the conversation by
sending a TEAP response with a zero-length message.

3.6.3. Phase 2 Errors

Any time the peer or the server finds a fatal error outside of the

TLS layer during Phase 2 TLV processing, it MUST send a Result TLV of
failure and an Error TLV with the appropriate error code. For errors
involving the processing of the sequence of exchanges, such as a
violation of TLV rules (e.g., multiple EAP-Payload TLVs), the error

code is Unexpected TLVs Exchanged. For errors involving a tunnel
compromise, the error code is Tunnel Compromise Error. Upon sending
a Result TLV with a fatal Error TLV, the sender terminates the TLS
tunnel. Note that a server will still wait for a message from the

peer after it sends a failure; however, the server does not need to
process the contents of the response message.

For the inner method, retransmission is not needed and SHOULD NOT be
attempted, as the Outer TLS tunnel can be considered a reliable
transport. If there is a non-fatal error handling the inner method,

instead of silently dropping the inner method request or response and

not responding, the receiving side SHOULD use an Error TLV with error
code Inner Method Error to indicate an error processing the current

inner method. The side receiving the Error TLV MAY decide to start a
new inner method instead or send back a Result TLV to terminate the
TEAP authentication session.

If a server receives a Result TLV of failure with a fatal Error TLV,

it MUST send a cleartext EAP Failure. If a peer receives a Result
TLV of failure, it MUST respond with a Result TLV indicating failure.
If the server has sent a Result TLV of failure, it ignores the peer
response, and it MUST send a cleartext EAP Failure.

3.7. Fragmentation

A single TLS record may be up to 16384 octets in length, buta TLS
message may span multiple TLS records, and a TLS certificate message
may, in principle, be as long as 16 MB. This is larger than the

maximum size for a message on most media types; therefore, it is
desirable to support fragmentation. Note that in order to protect

against reassembly lockup and denial-of-service attacks, it may be
desirable for an implementation to set a maximum size for one such
group of TLS messages. Since a typical certificate chain is rarely

longer than a few thousand octets, and no other field is likely to be
anywhere near as long, a reasonable choice of maximum acceptable
message length might be 64 KB. This is still a fairly large message
packet size so a TEAP implementation MUST provide its own support for

Zhou, et al. Standards Track [Page 19]

RFC 7170 TEAP May 2014

fragmentation and reassembly. Section 3.1 of [RFC3748] discusses
determining the MTU usable by EAP, and Section 4.3 discusses
retransmissions in EAP.

Since EAP is a lock-step protocol, fragmentation support can be added
in a simple manner. In EAP, fragments that are lost or damaged in
transit will be retransmitted, and since sequencing information is
provided by the Identifier field in EAP, there is no need for a

fragment offset field.

TEAP fragmentation support is provided through the addition of flag
bits within the EAP-Response and EAP-Request packets, as well as a
Message Length field of four octets. Flags include the Length
included (L), More fragments (M), and TEAP Start (S) bits. The L

flag is set to indicate the presence of the four-octet Message Length
field and MUST be set for the first fragment of a fragmented TLS
message or set of messages. It MUST NOT be present for any other
message. The M flag is set on all but the last fragment. The S flag

is set only within the TEAP start message sent from the EAP server to
the peer. The Message Length field is four octets and provides the
total length of the message that may be fragmented over the data
fields of multiple packets; this simplifies buffer allocation.

When a TEAP peer receives an EAP-Request packet with the M bit set,
it MUST respond with an EAP-Response with EAP Type of TEAP and no
data. This serves as a fragment ACK. The EAP server MUST wait until
it receives the EAP-Response before sending another fragment. In
order to prevent errors in processing of fragments, the EAP server
MUST increment the Identifier field for each fragment contained

within an EAP-Request, and the peer MUST include this Identifier

value in the fragment ACK contained within the EAP-Response.
Retransmitted fragments will contain the same Identifier value.

Similarly, when the TEAP server receives an EAP-Response with the M
bit set, it responds with an EAP-Request with EAP Type of TEAP and no
data. This serves as a fragment ACK. The EAP peer MUST wait until

it receives the EAP-Request before sending another fragment. In

order to prevent errors in the processing of fragments, the EAP

server MUST increment the Identifier value for each fragment ACK
contained within an EAP-Request, and the peer MUST include this
Identifier value in the subsequent fragment contained within an EAP-
Response.

3.8. Peer Services
Several TEAP services, including server unauthenticated provisioning,

PAC provisioning, certificate provisioning, and channel binding,
depend on the peer trusting the TEAP server. Peers MUST authenticate

Zhou, et al. Standards Track [Page 20]

RFC 7170 TEAP May 2014

the server before these peer services are used. TEAP peer
implementations MUST have a configuration where authentication fails
if server authentication cannot be achieved. In many cases, the
server will want to authenticate the peer before providing these
services as well.

TEAP peers MUST track whether or not server authentication has taken
place. Server authentication results if the peer trusts the provided
server certificate. Typically, this involves both validating the
certificate to a trust anchor and confirming the entity named by the
certificate is the intended server. Server authentication also

results when the procedures in Section 3.2 are used to resume a
session in which the peer and server were previously mutually
authenticated. Alternatively, peer services can be used if an inner
EAP method providing mutual authentication and an Extended Master
Session Key (EMSK) is executed and cryptographic binding with the
EMSK Compound Message Authentication Code (MAC) is correctly
validated (Section 4.2.13). This is further described in

Section 3.8.3.

An additional complication arises when a tunnel method authenticates
multiple parties such as authenticating both the peer machine and the
peer user to the EAP server. Depending on how authentication is
achieved, only some of these parties may have confidence in it. For
example, if a strong shared secret is used to mutually authenticate

the user and the EAP server, the machine may not have confidence that
the EAP server is the authenticated party if the machine cannot trust
the user not to disclose the shared secret to an attacker. In these
cases, the parties who participate in the authentication need to be
considered when evaluating whether to use peer services.

3.8.1. PAC Provisioning

To request provisioning of a PAC, a peer sends a PAC TLV as defined
in Section 4.2.12 containing a PAC Attribute as defined in

Section 4.2.12.1 of PAC-Type set to the appropriate value. The peer
MUST successfully authenticate the EAP server and validate the
Crypto-Binding TLV as defined in Section 4.2.13 before issuing the
request. The peer MUST send separate PAC TLVs for each type of PAC
it wants to be provisioned. Multiple PAC TLVs can be sent in the
same packet or in different packets. The EAP server will send the
PACs after its internal policy has been satisfied, or it MAY ignore

the request or request additional authentications if its policy

dictates. The server MAY cache the request and provision the PACs
requested after all of its internal policies have been satisfied. If

a peer receives a PAC with an unknown type, it MUST ignore it.

Zhou, et al. Standards Track [Page 21]

RFC 7170 TEAP May 2014

A PAC TLV containing a PAC-Acknowledge attribute MUST be sent by the
peer to acknowledge the receipt of the Tunnel PAC. A PAC TLV
containing a PAC-Acknowledge attribute MUST NOT be used by the peer
to acknowledge the receipt of other types of PACs. If the peer

receives a PAC TLV with an unknown attribute, it SHOULD ignore the
unknown attribute.

3.8.2. Certificate Provisioning within the Tunnel

Provisioning of a peer’s certificate is supported in TEAP by

performing the Simple PKI Request/Response from [RFC5272] using
PKCS#10 and PKCS#7 TLVs, respectively. A peer sends the Simple PKI
Request using a PKCS#10 CertificateRequest [RFC2986] encoded into the
body of a PKCS#10 TLV (see Section 4.2.17). The TEAP server issues a
Simple PKI Response using a PKCS#7 [RFC2315] degenerate "Certificates
Only" message encoded into the body of a PKCS#7 TLV (see

Section 4.2.16), only after an authentication method has run and

provided an identity proof on the peer prior to a certificate is

being issued.

In order to provide linking identity and proof-of-possession by
including information specific to the current authenticated TLS
session within the signed certification request, the peer generating
the request SHOULD obtain the tls-unique value from the TLS subsystem
as defined in "Channel Bindings for TLS" [RFC5929]. The TEAP peer
operations between obtaining the tls_unique value through generation
of the Certification Signing Request (CSR) that contains the current
tls_unique value and the subsequent verification of this value by the
TEAP server are the "phases of the application protocol during which
application-layer authentication occurs" that are protected by the
synchronization interoperability mechanism described in the
interoperability note in "Channel Bindings for TLS" ([RFC5929],
Section 3.1). When performing renegotiation, TLS
"secure_renegotiation" [RFC5746] MUST be used.

The tls-unique value is base-64-encoded as specified in Section 4 of
[RFC4648], and the resulting string is placed in the certification
request challengePassword field ([RFC2985], Section 5.4.1). The
challengePassword field is limited to 255 octets (Section 7.4.9 of
[RFC5246] indicates that no existing ciphersuite would result in an
issue with this limitation). If tis-unique information is not

embedded within the certification request, the challengePassword
field MUST be empty to indicate that the peer did not include the
optional channel-binding information (any value submitted is verified
by the server as tls-unique information).

Zhou, et al. Standards Track [Page 22]

RFC 7170 TEAP May 2014

The server SHOULD verify the tls-unique information. This ensures
that the authenticated TE