Stream: Internet Engineering Task Force (IETF)

RFC: 9204

Category: Standards Track

Published: June 2022

ISSN: 2070-1721

Authors: C. Krasic M. Bishop A. Frindell, Ed.

Akamai Technologies = Facebook

RFC 9204
QPACK: Field Compression for HTTP/3

Abstract

This specification defines QPACK: a compression format for efficiently representing HTTP fields
that is to be used in HTTP/3. This is a variation of HPACK compression that seeks to reduce head-
of-line blocking.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9204.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Krasic, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9204
https://www.rfc-editor.org/info/rfc9204
https://trustee.ietf.org/license-info

RFC9204 QPACK June 2022

Table of Contents

1. Introduction
1.1. Conventions and Definitions

1.2. Notational Conventions

2. Compression Process Overview
2.1. Encoder
2.1.1. Limits on Dynamic Table Insertions
2.1.2. Blocked Streams
2.1.3. Avoiding Flow-Control Deadlocks

2.1.4. Known Received Count

2.2. Decoder
2.2.1. Blocked Decoding
2.2.2. State Synchronization

2.2.3. Invalid References

3. Reference Tables

3.1. Static Table

3.2. Dynamic Table
3.2.1. Dynamic Table Size
3.2.2. Dynamic Table Capacity and Eviction
3.2.3. Maximum Dynamic Table Capacity
3.24. Absolute Indexing
3.2.5. Relative Indexing
3.2.6. Post-Base Indexing

4. Wire Format
4.1. Primitives
4.1.1. Prefixed Integers
4.1.2. String Literals

4.2. Encoder and Decoder Streams

Krasic, et al. Standards Track Page 2

RFC9204 QPACK June 2022

4.3. Encoder Instructions
4.3.1. Set Dynamic Table Capacity
4.3.2. Insert with Name Reference
4.3.3. Insert with Literal Name

4.34. Duplicate

4.4, Decoder Instructions
4.4.1. Section Acknowledgment
4.4.2. Stream Cancellation

4.4.3. Insert Count Increment

4.5. Field Line Representations
4.5.1. Encoded Field Section Prefix
4.5.2. Indexed Field Line
4.5.3. Indexed Field Line with Post-Base Index
4.54. Literal Field Line with Name Reference
4.5.5. Literal Field Line with Post-Base Name Reference
4.5.6. Literal Field Line with Literal Name
5. Configuration
6. Error Handling
7. Security Considerations
7.1. Probing Dynamic Table State
7.1.1. Applicability to QPACK and HTTP
7.1.2. Mitigation
7.1.3. Never-Indexed Literals
7.2. Static Huffman Encoding
7.3. Memory Consumption
7.4. Implementation Limits
8. IANA Considerations
8.1. Settings Registration
8.2. Stream Type Registration

8.3. Error Code Registration

Krasic, et al. Standards Track Page 3

RFC9204 QPACK June 2022

9. References
9.1. Normative References

9.2. Informative References

Appendix A. Static Table
Appendix B. Encoding and Decoding Examples
B.1. Literal Field Line with Name Reference
B.2. Dynamic Table
B.3. Speculative Insert
B.4. Duplicate Instruction, Stream Cancellation

B.5. Dynamic Table Insert, Eviction

Appendix C. Sample Single-Pass Encoding Algorithm
Acknowledgments

Authors' Addresses

1. Introduction

The QUIC transport protocol ((QUIC-TRANSPORT]) is designed to support HTTP semantics, and its
design subsumes many of the features of HTTP/2 (([HTTP/2]). HTTP/2 uses HPACK ([RFC7541]) for
compression of the header and trailer sections. If HPACK were used for HTTP/3 ([HTTP/3)), it
would induce head-of-line blocking for field sections due to built-in assumptions of a total
ordering across frames on all streams.

QPACK reuses core concepts from HPACK, but is redesigned to allow correctness in the presence of
out-of-order delivery, with flexibility for implementations to balance between resilience against
head-of-line blocking and optimal compression ratio. The design goals are to closely approach the
compression ratio of HPACK with substantially less head-of-line blocking under the same loss
conditions.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

The following terms are used in this document:

Krasic, et al. Standards Track Page 4

RFC9204 QPACK June 2022

HTTP fields: Metadata sent as part of an HTTP message. The term encompasses both header and
trailer fields. Colloquially, the term "headers" has often been used to refer to HTTP header fields
and trailer fields; this document uses "fields" for generality.

HTTP field line: A name-value pair sent as part of an HTTP field section. See Sections 6.3 and 6.5
of [HTTP].

HTTP field value: Data associated with a field name, composed from all field line values with
that field name in that section, concatenated together with comma separators.

Field section: An ordered collection of HTTP field lines associated with an HTTP message. A field
section can contain multiple field lines with the same name. It can also contain duplicate field
lines. An HTTP message can include both header and trailer sections.

Representation: An instruction that represents a field line, possibly by reference to the dynamic
and static tables.

Encoder: Animplementation that encodes field sections.
Decoder: An implementation that decodes encoded field sections.
Absolute Index: A unique index for each entry in the dynamic table.

Base: Areference point for relative and post-Base indices. Representations that reference
dynamic table entries are relative to a Base.

Insert Count: The total number of entries inserted in the dynamic table.

Note that QPACK is a name, not an abbreviation.

1.2. Notational Conventions
Diagrams in this document use the format described in Section 3.1 of [RFC2360], with the

following additional conventions:
X (A) Indicatesthat x is A bits long.

X (A+) Indicates that x uses the prefixed integer encoding defined in Section 4.1.1, beginning with
an A-bit prefix.

X .. Indicates that xis variable length and extends to the end of the region.

Krasic, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc9110#section-6.3
https://www.rfc-editor.org/rfc/rfc9110#section-6.5
https://www.rfc-editor.org/rfc/rfc2360#section-3.1

RFC9204 QPACK June 2022

2. Compression Process Overview

Like HPACK, QPACK uses two tables for associating field lines ("headers") to indices. The static
table (Section 3.1) is predefined and contains common header field lines (some of them with an
empty value). The dynamic table (Section 3.2) is built up over the course of the connection and
can be used by the encoder to index both header and trailer field lines in the encoded field
sections.

QPACK defines unidirectional streams for sending instructions from encoder to decoder and vice
versa.

2.1. Encoder

An encoder converts a header or trailer section into a series of representations by emitting either
an indexed or a literal representation for each field line in the list; see Section 4.5. Indexed
representations achieve high compression by replacing the literal name and possibly the value
with an index to either the static or dynamic table. References to the static table and literal
representations do not require any dynamic state and never risk head-of-line blocking.
References to the dynamic table risk head-of-line blocking if the encoder has not received an
acknowledgment indicating the entry is available at the decoder.

An encoder MAY insert any entry in the dynamic table it chooses; it is not limited to field lines it is
compressing.

QPACK preserves the ordering of field lines within each field section. An encoder MUST emit field
representations in the order they appear in the input field section.

QPACK is designed to place the burden of optional state tracking on the encoder, resulting in
relatively simple decoders.

2.1.1. Limits on Dynamic Table Insertions

Inserting entries into the dynamic table might not be possible if the table contains entries that
cannot be evicted.

A dynamic table entry cannot be evicted immediately after insertion, even if it has never been
referenced. Once the insertion of a dynamic table entry has been acknowledged and there are no
outstanding references to the entry in unacknowledged representations, the entry becomes
evictable. Note that references on the encoder stream never preclude the eviction of an entry,
because those references are guaranteed to be processed before the instruction evicting the entry.

If the dynamic table does not contain enough room for a new entry without evicting other
entries, and the entries that would be evicted are not evictable, the encoder MUST NOT insert that
entry into the dynamic table (including duplicates of existing entries). In order to avoid this, an
encoder that uses the dynamic table has to keep track of each dynamic table entry referenced by
each field section until those representations are acknowledged by the decoder; see Section 4.4.1.

Krasic, et al. Standards Track Page 6

RFC9204 QPACK June 2022

2.1.1.1. Avoiding Prohibited Insertions

To ensure that the encoder is not prevented from adding new entries, the encoder can avoid
referencing entries that are close to eviction. Rather than reference such an entry, the encoder
can emit a Duplicate instruction (Section 4.3.4) and reference the duplicate instead.

Determining which entries are too close to eviction to reference is an encoder preference. One
heuristic is to target a fixed amount of available space in the dynamic table: either unused space
or space that can be reclaimed by evicting non-blocking entries. To achieve this, the encoder can
maintain a draining index, which is the smallest absolute index (Section 3.2.4) in the dynamic
table that it will emit a reference for. As new entries are inserted, the encoder increases the
draining index to maintain the section of the table that it will not reference. If the encoder does
not create new references to entries with an absolute index lower than the draining index, the
number of unacknowledged references to those entries will eventually become zero, allowing
them to be evicted.

<-- Newer Entries Older Entries -->
(Larger Indices) (Smaller Indices)

- i Fomm - +
| Unused | Referenceable | Draining |
| Space | Entries | Entries |
- i Fomm - +

A A A

| | |

Insertion Point Draining Index Dropping
Point

Figure 1: Draining Dynamic Table Entries

2.1.2. Blocked Streams

Because QUIC does not guarantee order between data on different streams, a decoder might
encounter a representation that references a dynamic table entry that it has not yet received.

Each encoded field section contains a Required Insert Count (Section 4.5.1), the lowest possible
value for the Insert Count with which the field section can be decoded. For a field section encoded
using references to the dynamic table, the Required Insert Count is one larger than the largest
absolute index of all referenced dynamic table entries. For a field section encoded with no
references to the dynamic table, the Required Insert Count is zero.

When the decoder receives an encoded field section with a Required Insert Count greater than its
own Insert Count, the stream cannot be processed immediately and is considered "blocked"; see
Section 2.2.1.

The decoder specifies an upper bound on the number of streams that can be blocked using the
SETTINGS_QPACK_BLOCKED_STREAMS setting; see Section 5. An encoder MUST limit the number
of streams that could become blocked to the value of SETTINGS_QPACK_BLOCKED_STREAMS at
all times. If a decoder encounters more blocked streams than it promised to support, it MUST treat
this as a connection error of type QPACK_DECOMPRESSION_FAILED.

Krasic, et al. Standards Track Page 7

RFC9204 QPACK June 2022

Note that the decoder might not become blocked on every stream that risks becoming blocked.

An encoder can decide whether to risk having a stream become blocked. If permitted by the value
of SETTINGS_QPACK_BLOCKED_STREAMS, compression efficiency can often be improved by
referencing dynamic table entries that are still in transit, but if there is loss or reordering, the
stream can become blocked at the decoder. An encoder can avoid the risk of blocking by only
referencing dynamic table entries that have been acknowledged, but this could mean using
literals. Since literals make the encoded field section larger, this can result in the encoder
becoming blocked on congestion or flow-control limits.

2.1.3. Avoiding Flow-Control Deadlocks

Writing instructions on streams that are limited by flow control can produce deadlocks.

A decoder might stop issuing flow-control credit on the stream that carries an encoded field
section until the necessary updates are received on the encoder stream. If the granting of flow-
control credit on the encoder stream (or the connection as a whole) depends on the consumption
and release of data on the stream carrying the encoded field section, a deadlock might result.

More generally, a stream containing a large instruction can become deadlocked if the decoder
withholds flow-control credit until the instruction is completely received.

To avoid these deadlocks, an encoder SHOULD NOT write an instruction unless sufficient stream
and connection flow-control credit is available for the entire instruction.

2.1.4. Known Received Count

The Known Received Count is the total number of dynamic table insertions and duplications
acknowledged by the decoder. The encoder tracks the Known Received Count in order to identify
which dynamic table entries can be referenced without potentially blocking a stream. The
decoder tracks the Known Received Count in order to be able to send Insert Count Increment
instructions.

A Section Acknowledgment instruction (Section 4.4.1) implies that the decoder has received all
dynamic table state necessary to decode the field section. If the Required Insert Count of the
acknowledged field section is greater than the current Known Received Count, the Known
Received Count is updated to that Required Insert Count value.

An Insert Count Increment instruction (Section 4.4.3) increases the Known Received Count by its
Increment parameter. See Section 2.2.2.3 for guidance.

2.2. Decoder

As in HPACK, the decoder processes a series of representations and emits the corresponding field
sections. It also processes instructions received on the encoder stream that modify the dynamic
table. Note that encoded field sections and encoder stream instructions arrive on separate
streams. This is unlike HPACK, where encoded field sections (header blocks) can contain
instructions that modify the dynamic table, and there is no dedicated stream of HPACK
instructions.

Krasic, et al. Standards Track Page 8

RFC9204 QPACK June 2022

The decoder MUST emit field lines in the order their representations appear in the encoded field
section.

2.2.1. Blocked Decoding

Upon receipt of an encoded field section, the decoder examines the Required Insert Count. When
the Required Insert Count is less than or equal to the decoder's Insert Count, the field section can
be processed immediately. Otherwise, the stream on which the field section was received becomes
blocked.

While blocked, encoded field section data SHOULD remain in the blocked stream's flow-control
window. This data is unusable until the stream becomes unblocked, and releasing the flow
control prematurely makes the decoder vulnerable to memory exhaustion attacks. A stream
becomes unblocked when the Insert Count becomes greater than or equal to the Required Insert
Count for all encoded field sections the decoder has started reading from the stream.

When processing encoded field sections, the decoder expects the Required Insert Count to equal
the lowest possible value for the Insert Count with which the field section can be decoded, as
prescribed in Section 2.1.2. If it encounters a Required Insert Count smaller than expected, it MUST
treat this as a connection error of type QPACK_DECOMPRESSION_FAILED; see Section 2.2.3. If it
encounters a Required Insert Count larger than expected, it MAY treat this as a connection error
of type QPACK_DECOMPRESSION_FAILED.

2.2.2. State Synchronization

The decoder signals the following events by emitting decoder instructions (Section 4.4) on the
decoder stream.

2.2.2.1. Completed Processing of a Field Section

After the decoder finishes decoding a field section encoded using representations containing
dynamic table references, it MUST emit a Section Acknowledgment instruction (Section 4.4.1). A
stream may carry multiple field sections in the case of intermediate responses, trailers, and
pushed requests. The encoder interprets each Section Acknowledgment instruction as
acknowledging the earliest unacknowledged field section containing dynamic table references
sent on the given stream.

2.2.2.2. Abandonment of a Stream

When an endpoint receives a stream reset before the end of a stream or before all encoded field
sections are processed on that stream, or when it abandons reading of a stream, it generates a
Stream Cancellation instruction; see Section 4.4.2. This signals to the encoder that all references
to the dynamic table on that stream are no longer outstanding. A decoder with a maximum
dynamic table capacity (Section 3.2.3) equal to zero MAY omit sending Stream Cancellations,
because the encoder cannot have any dynamic table references. An encoder cannot infer from
this instruction that any updates to the dynamic table have been received.

Krasic, et al. Standards Track Page 9

RFC9204 QPACK June 2022

The Section Acknowledgment and Stream Cancellation instructions permit the encoder to
remove references to entries in the dynamic table. When an entry with an absolute index lower
than the Known Received Count has zero references, then it is considered evictable; see Section
2.1.1.

2.2.2.3. New Table Entries

After receiving new table entries on the encoder stream, the decoder chooses when to emit Insert
Count Increment instructions; see Section 4.4.3. Emitting this instruction after adding each new
dynamic table entry will provide the timeliest feedback to the encoder, but could be redundant
with other decoder feedback. By delaying an Insert Count Increment instruction, the decoder
might be able to coalesce multiple Insert Count Increment instructions or replace them entirely
with Section Acknowledgments; see Section 4.4.1. However, delaying too long may lead to
compression inefficiencies if the encoder waits for an entry to be acknowledged before using it.

2.2.3. Invalid References

If the decoder encounters a reference in a field line representation to a dynamic table entry that
has already been evicted or that has an absolute index greater than or equal to the declared
Required Insert Count (Section 4.5.1), it MUST treat this as a connection error of type
QPACK_DECOMPRESSION_FAILED.

If the decoder encounters a reference in an encoder instruction to a dynamic table entry that has
already been evicted, it MUST treat this as a connection error of type
QPACK_ENCODER_STREAM_ERROR.

3. Reference Tables

Unlike in HPACK, entries in the QPACK static and dynamic tables are addressed separately. The
following sections describe how entries in each table are addressed.

3.1. Static Table

The static table consists of a predefined list of field lines, each of which has a fixed index over
time. Its entries are defined in Appendix A.

All entries in the static table have a name and a value. However, values can be empty (that is,
have a length of 0). Each entry is identified by a unique index.

Note that the QPACK static table is indexed from 0, whereas the HPACK static table is indexed from
1.

When the decoder encounters an invalid static table index in a field line representation, it MUST
treat this as a connection error of type QPACK_DECOMPRESSION_FAILED. If this index is received
on the encoder stream, this MUST be treated as a connection error of type
QPACK_ENCODER_STREAM_ERROR.

Krasic, et al. Standards Track Page 10

RFC9204 QPACK June 2022

3.2. Dynamic Table

The dynamic table consists of a list of field lines maintained in first-in, first-out order. A QPACK
encoder and decoder share a dynamic table that is initially empty. The encoder adds entries to
the dynamic table and sends them to the decoder via instructions on the encoder stream; see
Section 4.3.

The dynamic table can contain duplicate entries (i.e., entries with the same name and same
value). Therefore, duplicate entries MUST NOT be treated as an error by the decoder.

Dynamic table entries can have empty values.

3.2.1. Dynamic Table Size

The size of the dynamic table is the sum of the size of its entries.

The size of an entry is the sum of its name's length in bytes, its value's length in bytes, and 32
additional bytes. The size of an entry is calculated using the length of its name and value without
Huffman encoding applied.

3.2.2. Dynamic Table Capacity and Eviction

The encoder sets the capacity of the dynamic table, which serves as the upper limit on its size. The
initial capacity of the dynamic table is zero. The encoder sends a Set Dynamic Table Capacity
instruction (Section 4.3.1) with a non-zero capacity to begin using the dynamic table.

Before a new entry is added to the dynamic table, entries are evicted from the end of the dynamic
table until the size of the dynamic table is less than or equal to (table capacity - size of new entry).
The encoder MUST NOT cause a dynamic table entry to be evicted unless that entry is evictable;
see Section 2.1.1. The new entry is then added to the table. It is an error if the encoder attempts to
add an entry that is larger than the dynamic table capacity; the decoder MUST treat this as a
connection error of type QPACK_ENCODER_STREAM_ERROR.

Anew entry can reference an entry in the dynamic table that will be evicted when adding this
new entry into the dynamic table. Implementations are cautioned to avoid deleting the
referenced name or value if the referenced entry is evicted from the dynamic table prior to
inserting the new entry.

Whenever the dynamic table capacity is reduced by the encoder (Section 4.3.1), entries are
evicted from the end of the dynamic table until the size of the dynamic table is less than or equal
to the new table capacity. This mechanism can be used to completely clear entries from the
dynamic table by setting a capacity of 0, which can subsequently be restored.

Krasic, et al. Standards Track Page 11

RFC9204 QPACK June 2022

3.2.3. Maximum Dynamic Table Capacity

To bound the memory requirements of the decoder, the decoder limits the maximum value the
encoder is permitted to set for the dynamic table capacity. In HTTP/3, this limit is determined by
the value of SETTINGS_QPACK _MAX_TABLE_CAPACITY sent by the decoder; see Section 5. The
encoder MUST NOT set a dynamic table capacity that exceeds this maximum, but it can choose to
use a lower dynamic table capacity; see Section 4.3.1.

For clients using O-RTT data in HTTP/3, the server's maximum table capacity is the remembered
value of the setting or zero if the value was not previously sent. When the client's 0-RTT value of
the SETTING is zero, the server MAY set it to a non-zero value in its SETTINGS frame. If the
remembered value is non-zero, the server MUST send the same non-zero value in its SETTINGS
frame. If it specifies any other value, or omits SETTINGS_QPACK _MAX_TABLE_CAPACITY from
SETTINGS, the encoder must treat this as a connection error of type
QPACK_DECODER_STREAM_ERROR.

For clients not using 0-RTT data (whether 0-RTT is not attempted or is rejected) and for all HTTP/3
servers, the maximum table capacity is 0 until the encoder processes a SETTINGS frame with a
non-zero value of SETTINGS_QPACK _MAX_TABLE_CAPACITY.

When the maximum table capacity is zero, the encoder MUST NOT insert entries into the dynamic
table and MUST NOT send any encoder instructions on the encoder stream.

3.2.4. Absolute Indexing

Each entry possesses an absolute index that is fixed for the lifetime of that entry. The first entry
inserted has an absolute index of 0; indices increase by one with each insertion.

3.2.5. Relative Indexing

Relative indices begin at zero and increase in the opposite direction from the absolute index.

Determining which entry has a relative index of 0 depends on the context of the reference.

In encoder instructions (Section 4.3), a relative index of 0 refers to the most recently inserted
value in the dynamic table. Note that this means the entry referenced by a given relative index
will change while interpreting instructions on the encoder stream.

Krasic, et al. Standards Track Page 12

RFC9204 QPACK June 2022

+----- e T +--m- - +
| n-1 | | d | Absolute Index
I + - - - +
| © | | n-d-1 | Relative Index
R e e il +
A I
| \%
Insertion Point Dropping Point

count of entries inserted
count of entries dropped

n
d
Figure 2: Example Dynamic Table Indexing - Encoder Stream

Unlike in encoder instructions, relative indices in field line representations are relative to the
Base at the beginning of the encoded field section; see Section 4.5.1. This ensures that references
are stable even if encoded field sections and dynamic table updates are processed out of order.

In a field line representation, a relative index of 0 refers to the entry with absolute index equal to
Base-1.

Base
|
v
+-—-=- +---=- R R R +
| n-1 | n-2 | n-3 | | d | Absolute Index
+----- +---—- + - +----- + - +
| © | ... | n-d-3 | Relative Index
e e R +
n = count of entries inserted
d = count of entries dropped

In this example, Base = n - 2
Figure 3: Example Dynamic Table Indexing - Relative Index in Representation

3.2.6. Post-Base Indexing

Post-Base indices are used in field line representations for entries with absolute indices greater
than or equal to Base, starting at 0 for the entry with absolute index equal to Base and increasing
in the same direction as the absolute index.

Post-Base indices allow an encoder to process a field section in a single pass and include
references to entries added while processing this (or other) field sections.

Krasic, et al. Standards Track Page 13

RFC9204 QPACK June 2022

Base

I

v
R R R R +-———- +
| n-1T | n-2 | n-3 | ... | d | Absolute Index
+--—-=- +--—-=- +-—-—- +---—- +-—-—- +
| 1 | ©8 | Post-Base Index
+----- +----- +

count of entries inserted
count of entries dropped
n this example, Base = n - 2

n
d
I
Figure 4: Example Dynamic Table Indexing - Post-Base Index in Representation

4. Wire Format

4.1. Primitives

4.1.1. Prefixed Integers

The prefixed integer from Section 5.1 of [RFC7541] is used heavily throughout this document. The
format from [RFC7541] is used unmodified. Note, however, that QPACK uses some prefix sizes not
actually used in HPACK.

QPACK implementations MUST be able to decode integers up to and including 62 bits long.

4.1.2. StringLiterals

The string literal defined by Section 5.2 of [RFC7541] is also used throughout. This string format
includes optional Huffman encoding.

HPACK defines string literals to begin on a byte boundary. They begin with a single bit flag,
denoted as 'H' in this document (indicating whether the string is Huffman encoded), followed by
the string length encoded as a 7-bit prefix integer, and finally the indicated number of bytes of
data. When Huffman encoding is enabled, the Huffman table from Appendix B of [RFC7541] is
used without modification and the indicated length is the size of the string after encoding.

This document expands the definition of string literals by permitting them to begin other than on
a byte boundary. An "N-bit prefix string literal” begins mid-byte, with the first (8-N) bits allocated
to a previous field. The string uses one bit for the Huffman flag, followed by the length of the
encoded string as a (N-1)-bit prefix integer. The prefix size, N, can have a value between 2 and 8,
inclusive. The remainder of the string literal is unmodified.

A string literal without a prefix length noted is an 8-bit prefix string literal and follows the
definitions in [RFC7541] without modification.

Krasic, et al. Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc7541#section-5.1
https://www.rfc-editor.org/rfc/rfc7541#section-5.2
https://www.rfc-editor.org/rfc/rfc7541#appendix-B

RFC9204 QPACK June 2022

4.2. Encoder and Decoder Streams

QPACK defines two unidirectional stream types:

* An encoder stream is a unidirectional stream of type 0x02. It carries an unframed sequence
of encoder instructions from encoder to decoder.

» Adecoder stream is a unidirectional stream of type 0x03. It carries an unframed sequence of
decoder instructions from decoder to encoder.

HTTP/3 endpoints contain a QPACK encoder and decoder. Each endpoint MUST initiate, at most,
one encoder stream and, at most, one decoder stream. Receipt of a second instance of either
stream type MUST be treated as a connection error of type H3_STREAM_CREATION_ERROR.

The sender MUST NOT close either of these streams, and the receiver MUST NOT request that the
sender close either of these streams. Closure of either unidirectional stream type MUST be treated
as a connection error of type H3_CLOSED_CRITICAL_STREAM.

An endpoint MAY avoid creating an encoder stream if it will not be used (for example, if its
encoder does not wish to use the dynamic table or if the maximum size of the dynamic table
permitted by the peer is zero).

An endpoint MAY avoid creating a decoder stream if its decoder sets the maximum capacity of
the dynamic table to zero.

An endpoint MUST allow its peer to create an encoder stream and a decoder stream even if the
connection's settings prevent their use.

4.3. Encoder Instructions

An encoder sends encoder instructions on the encoder stream to set the capacity of the dynamic
table and add dynamic table entries. Instructions adding table entries can use existing entries to
avoid transmitting redundant information. The name can be transmitted as a reference to an
existing entry in the static or the dynamic table or as a string literal. For entries that already exist
in the dynamic table, the full entry can also be used by reference, creating a duplicate entry.

4.3.1. SetDynamic Table Capacity

An encoder informs the decoder of a change to the dynamic table capacity using an instruction
that starts with the '001' 3-bit pattern. This is followed by the new dynamic table capacity
represented as an integer with a 5-bit prefix; see Section 4.1.1.

Krasic, et al. Standards Track Page 15

RFC9204 QPACK June 2022

0 1 2 3 4 5 6 7
e e T e e e bett TP
| @ | @ | 1 | Capacity (5+) |
e e T e +

Figure 5: Set Dynamic Table Capacity

The new capacity MUST be lower than or equal to the limit described in Section 3.2.3. In HTTP/3,
this limit is the value of the SETTINGS_QPACK_MAX_TABLE_CAPACITY parameter (Section 5)
received from the decoder. The decoder MUST treat a new dynamic table capacity value that
exceeds this limit as a connection error of type QPACK_ENCODER_STREAM_ERROR.

Reducing the dynamic table capacity can cause entries to be evicted; see Section 3.2.2. This MUST
NOT cause the eviction of entries that are not evictable; see Section 2.1.1. Changing the capacity of
the dynamic table is not acknowledged as this instruction does not insert an entry.

4.3.2. Insertwith Name Reference

An encoder adds an entry to the dynamic table where the field name matches the field name of
an entry stored in the static or the dynamic table using an instruction that starts with the '1' 1-bit
pattern. The second ('T") bit indicates whether the reference is to the static or dynamic table. The
6-bit prefix integer (Section 4.1.1) that follows is used to locate the table entry for the field name.
When T=1, the number represents the static table index; when T=0, the number is the relative
index of the entry in the dynamic table.

The field name reference is followed by the field value represented as a string literal; see Section
4.1.2.

0 1 2 3 4 5 6 7

-ttt ———t-——F-——F--—+
| 1] T | Name Index (6+) |
e e T e +
| H | Value Length (7+) |
e e +
| Value String (Length bytes) |
e et +

Figure 6: Insert Field Line -- Indexed Name

4.3.3. Insertwith Literal Name

An encoder adds an entry to the dynamic table where both the field name and the field value are
represented as string literals using an instruction that starts with the '01' 2-bit pattern.

This is followed by the name represented as a 6-bit prefix string literal and the value represented
as an 8-bit prefix string literal; see Section 4.1.2.

Krasic, et al. Standards Track Page 16

RFC9204 QPACK June 2022

0 1 2 3 4 5 6 7
e e T e e e A bett TP
| @ | 1 | H | Name Length (5+) |

R e P +
| Name String (Length bytes) |
e T T +
| H | Value Length (7+) |
e R +
| Value String (Length bytes) |
Fom e - +

Figure 7: Insert Field Line -- New Name

4.3.4. Duplicate

An encoder duplicates an existing entry in the dynamic table using an instruction that starts with
the '000' 3-bit pattern. This is followed by the relative index of the existing entry represented as an
integer with a 5-bit prefix; see Section 4.1.1.

0 1 2 3 4 5 6 7
e s T S S S s it
| 8 | 86 | 0 | Index (5+) |
e e S +

Figure 8: Duplicate

The existing entry is reinserted into the dynamic table without resending either the name or the
value. This is useful to avoid adding a reference to an older entry, which might block inserting
new entries.

4.4. Decoder Instructions

A decoder sends decoder instructions on the decoder stream to inform the encoder about the
processing of field sections and table updates to ensure consistency of the dynamic table.
4.4.1. Section Acknowledgment

After processing an encoded field section whose declared Required Insert Count is not zero, the
decoder emits a Section Acknowledgment instruction. The instruction starts with the '1' 1-bit
pattern, followed by the field section's associated stream ID encoded as a 7-bit prefix integer; see
Section 4.1.1.

This instruction is used as described in Sections 2.1.4 and 2.2.2.

Krasic, et al. Standards Track Page 17

RFC9204 QPACK June 2022

0 1 2 3 4 5 6 7
e e T e e e bett TP
| 1 | Stream ID (7+)

s et +

Figure 9: Section Acknowledgment

If an encoder receives a Section Acknowledgment instruction referring to a stream on which
every encoded field section with a non-zero Required Insert Count has already been
acknowledged, this MUST be treated as a connection error of type
QPACK_DECODER_STREAM_ERROR.

The Section Acknowledgment instruction might increase the Known Received Count; see Section
2.14.

4.4.2. Stream Cancellation

When a stream is reset or reading is abandoned, the decoder emits a Stream Cancellation
instruction. The instruction starts with the '01' 2-bit pattern, followed by the stream ID of the
affected stream encoded as a 6-bit prefix integer.

This instruction is used as described in Section 2.2.2.

0 1 2 3 4 5 6 7
e e e S e S Attt
| @ | 1 | Stream ID (6+) |
e R P +

Figure 10: Stream Cancellation

4.4.3. Insert Count Increment

The Insert Count Increment instruction starts with the '00' 2-bit pattern, followed by the
Increment encoded as a 6-bit prefix integer. This instruction increases the Known Received Count
(Section 2.1.4) by the value of the Increment parameter. The decoder should send an Increment
value that increases the Known Received Count to the total number of dynamic table insertions
and duplications processed so far.

0 1 2 3 4 5 6 7
e e e S e S Attt
| @ | 0 | Increment (6+) |
e R P +

Figure 11: Insert Count Increment

An encoder that receives an Increment field equal to zero, or one that increases the Known
Received Count beyond what the encoder has sent, MUST treat this as a connection error of t