Stream: Internet Engineering Task Force (IETF)

RFC: 9431

Category: Standards Track

Published: July 2023

ISSN: 2070-1721

Authors: C. Sengul A. Kirby

Brunel University ~ Oxbotica

RFC 9431

Message Queuing Telemetry Transport (MQTT) and
Transport Layer Security (TLS) Profile of
Authentication and Authorization for Constrained
Environments (ACE) Framework

Abstract

This document specifies a profile for the Authentication and Authorization for Constrained
Environments (ACE) framework to enable authorization in a publish-subscribe messaging system
based on Message Queuing Telemetry Transport (MQTT). Proof-of-Possession keys, bound to
OAuth 2.0 access tokens, are used to authenticate and authorize MQTT Clients. The protocol relies
on TLS for confidentiality and MQTT server (Broker) authentication.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at https://www.rfc-editor.org/info/rfc9431.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights
reserved.

Sengul & Kirby Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9431
https://www.rfc-editor.org/info/rfc9431

RFC 9431 MQTT-TLS Profile of ACE July 2023

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction
1.1. Requirements Language
1.2. ACE-Related Terminology
1.3. MQTT-Related Terminology

2. Authorizing Connection Requests
2.1. Client Token Request to the Authorization Server (AS)
2.2. Client Connection Request to the Broker (C)
2.2.1. Overview of Client-RS Authentication Methods over TLS and MQTT
2.2.2. authz-info: The Authorization Information Topic
2.2.3. Client Authentication over TLS
2.2.3.1. Raw Public Key Mode
2.2.3.2. Pre-Shared Key Mode
2.2.4. Client Authentication over MQTT
2.2.4.1. Transporting the Access Token inside the MQTT CONNECT
2.2.4.2. Authentication Using the AUTH Property
2.2.5. Broker Token Validation
2.3. Token Scope and Authorization
2.4. Broker Response to Client Connection Request
2.4.1. Unauthorized Request and the Optional Authorization Server Discovery
2.4.2. Authorization Success
3. Authorizing PUBLISH and SUBSCRIBE Packets
3.1. PUBLISH Packets from the Publisher Client to the Broker
3.2. PUBLISH Packets from the Broker to the Subscriber Clients
3.3. Authorizing SUBSCRIBE Packets

Sengul & Kirby Standards Track Page 2

https://trustee.ietf.org/license-info

RFC 9431 MQTT-TLS Profile of ACE July 2023

4. Token Expiration, Update, and Reauthentication

5. Handling Disconnections and Retained Messages

6. Reduced Protocol Interactions for MQTT v3.1.1
6.1. Token Transport

6.2. Handling Authorization Errors

7. IANA Considerations
7.1. TLS Exporter Labels Registration
7.2. Media Type Registration
7.3. ACE OAuth Profile Registration
7.4. AIF

8. Security Considerations
9. Privacy Considerations
10. References
10.1. Normative References

10.2. Informative References

Appendix A. Checklist for Profile Requirements
Acknowledgments

Authors' Addresses

1. Introduction

This document specifies a profile for the ACE framework [RFC9200]. In this profile, Clients and
Servers (Brokers) use MQTT to exchange Application Messages. The protocol relies on TLS for
communication security between entities. The MQTT protocol interactions are described based
on the MQTT v5.0 OASIS Standard [MQTT-OASIS-Standard-v5]. Since it is expected that MQTT
deployments will continue to support MQTT v3.1.1 Clients, this document also describes a
reduced set of protocol interactions for the MQTT v3.1.1 OASIS Standard [MQTT-OASIS-Standard-
v3.1.1]. However, MQTT v5.0 is the RECOMMENDED version, as it works more naturally with ACE-
style authentication and authorization.

MQTT is a publish-subscribe protocol, and after connecting to the MQTT Server (Broker), a Client
can publish and subscribe to multiple topics. The Broker, which acts as the Resource Server (RS),
is responsible for distributing messages published by the publishers to their subscribers. In the
rest of the document, the terms "RS", "MQTT Server", and "Broker" are used interchangeably.

Sengul & Kirby Standards Track Page 3

RFC 9431 MQTT-TLS Profile of ACE July 2023

Messages are published under a Topic Name, and subscribers subscribe to the Topic Names to
receive the corresponding messages. The Broker uses the Topic Name in a published message to
determine which subscribers to relay the messages to. In this document, topics (more specifically,
Topic Names) are treated as resources. The Clients are assumed to have identified the publish/
subscribe topics of interest out of band (topic discovery is not a feature of the MQTT protocol). A
Resource Owner can preconfigure policies at the Authorization Server (AS) that give Clients
publish or subscribe permissions to different topics.

Clients prove their permission to publish and subscribe to topics hosted on an MQTT Broker
using an access token that is bound to a Proof-of-Possession (PoP) key. This document describes
how to authorize the following exchanges between the Clients and the Broker.

* connection requests from the Clients to the Broker
* publish requests from the Clients to the Broker and from the Broker to the Clients
* subscribe requests from the Clients to the Broker

Clients use the MQTT PUBLISH packet to publish to a topic. The mechanisms specified in this
document do not protect the Payload of the PUBLISH packet from the Broker. Hence, the Payload
is not signed or encrypted specifically for the subscribers. This functionality may be
implemented using the proposal outlined in the ACE Pub-Sub Profile [ACE-PUBSUB-PROFILE].

To provide communication confidentiality and Broker authentication to the MQTT Clients, TLS is
used, and TLS 1.3 [RFC8446] is RECOMMENDED. This document makes the same assumptions as
Section 4 of the ACE framework [RFC9200] regarding Client and RS registration with the AS for
setting up the keying material. While the Client-Broker exchanges are only over MQTT, the
required Client-AS and RS-AS interactions are described for HTTPS-based communication
[RFC9110], using the "application/ace+json" content type and, unless otherwise specified, JSON
encoding. The token MAY be an opaque reference to authorization information or a JSON Web
Token (JWT) [REC7519]. For JWTs, this document follows [RFC7800] for PoP semantics for JWTs,
and the mechanisms for providing and verifying PoP are detailed in Section 2.2. The Client-AS
and RS-AS exchanges MAY also use protocols other than HTTP, e.g., Constrained Application
Protocol (CoAP) [RFC7252] or MQTT. It is recommended that TLS is used to secure these
communication channels between Client-AS and RS-AS. To reduce the protocol memory and
bandwidth requirements, implementations MAY also use the "application/ace+cbor" content type,
Concise Binary Object Representation (CBOR) encoding [RFC8949], CBOR Web Tokens (CWTSs)
[RFC8392], and associated PoP semantics. For more information, see "Proof-of-Possession Key
Semantics for CBOR Web Tokens (CWTs)" [RFC8747]. AJWT uses JSON Object Signing and
Encryption (JOSE), while a CWT uses CBOR Object Signing and Encryption (COSE) [RFC9052] for
security protection.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

Sengul & Kirby Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc9200#section-4

RFC 9431 MQTT-TLS Profile of ACE July 2023

1.2. ACE-Related Terminology

non

Certain security-related terms, such as "authentication”, "authorization", "data confidentiality",
"(data) integrity", "message authentication code" (MAC), and "verify", are taken from [RFC4949].

The terminology for entities in the architecture is defined in OAuth 2.0 [RFC6749], such as
"Client" (C), "Resource Server" (RS), and "Authorization Server" (AS).

The term "resource" is used to refer to an MQTT Topic Name, which is defined in Section 1.3.
Hence, the "Resource Owner" is any entity that can authoritatively speak for the topic. This
document also defines a Client Authorization Server for Clients that are not able to support HTTP.

Client Authorization Server (CAS)
An entity that prepares and endorses authentication and authorization data for a Client
and communicates to the AS using HTTPS.

1.3. MQTT-Related Terminology

The document describes message exchanges as MQTT protocol interactions. The Clients are
MQTT Clients, which connect to the Broker to publish and subscribe to Application Messages
(which are labeled with their topics). For additional information, please refer to the MQTT v5.0
OASIS Standard [MQTT-OASIS-Standard-v5] or MQTT v3.1.1 OASIS Standard [MQTT-OASIS-
Standard-v3.1.1].

Broker
The Server in MQTT. It acts as an intermediary between the Clients that publish
Application Messages and the Clients that made Subscriptions. The Broker acts as the
Resource Server for the Clients.

Client
A device or program that uses MQTT.

Network Connection
A construct provided by the underlying transport protocol that is being used by MQTT. It
connects the Client to the Server. It provides the means to send an ordered, lossless
stream of bytes in both directions. This document uses TLS as the transport protocol.

Session
A stateful interaction between a Client and a Broker. Some Sessions last only as long as
the Network Connection; others can span multiple Network Connections.

Application Message
The data carried by the MQTT protocol. The data has an associated Quality-of-Service
(QoS) level and Topic Name.

Sengul & Kirby Standards Track Page 5

RFC 9431 MQTT-TLS Profile of ACE July 2023

MQTT Control Packet
The MQTT protocol operates by exchanging a series of MQTT Control Packets. Each
packet is composed of a Fixed Header, a Variable Header (depending on the Control
Packet type), and a Payload.

UTF-8-encoded string
A string prefixed with a two-byte-length field that gives the number of bytes in a UTF-8-
encoded string itself. Unless stated otherwise, all UTF-8-encoded strings can have any
length in the range 0 to 65535 bytes.

Binary Data
Binary Data is represented by a two-byte-length field, which indicates the number of
data bytes, followed by that number of bytes. Thus, the length of Binary Data is limited to
the range of 0 to 65535 bytes.

Variable Byte Integer
A Variable Byte Integer is encoded using an encoding scheme that uses a single byte for
values up to 127. For larger values, the least significant seven bits of each byte encode
the data, and the most significant bit is used to indicate whether there are bytes
following in the representation. Thus, each byte encodes 128 values and a "continuation
bit". The maximum number of bytes in the Variable Byte Integer field is four.

QoS level
The level of assurance for the delivery of an Application Message. The QoS level can be
0-2, where 0 indicates "At most once delivery", 1 indicates "At least once delivery", and 2
indicates "Exactly once delivery".

Property
The last field of the Variable Header is a set of properties for several MQTT Control
Packets (e.g., CONNECT and CONNACK). A property consists of an Identifier that defines
its usage and data type, followed by a value. The Identifier is encoded as a Variable Byte
Integer. For example, the "Authentication Data" property uses the identifier 22.

Topic Name
The label attached to an Application Message, which is matched to a Subscription.

Subscription
A Subscription comprises a Topic Filter and a maximum QoS. A Subscription is
associated with a single Session.

Topic Filter
An expression that indicates interest in one or more Topic Names. Topic Filters may
include wildcards.

MQTT sends various Control Packets across a Network Connection. The following is not an
exhaustive list, and the Control Packets that are not relevant for authorization are not explained.
For instance, these include the PUBREL and PUBCOMP packets used in the 4-step handshake
required for QoS level 2.

Sengul & Kirby Standards Track Page 6

RFC 9431 MQTT-TLS Profile of ACE July 2023

CONNECT
The Client requests to connect to the Broker. This is the first packet sent by a Client.

CONNACK
The Broker connection acknowledgment. CONNACK packets contain return codes that
indicate either a success or an error state in response to a Client's CONNECT packet.

AUTH
An AUTH Control Packet is sent from the Client to the Broker or from the Broker to the
Client as part of an extended authentication exchange. AUTH properties include the
Authentication Method and Authentication Data. The Authentication Method is set in the
CONNECT packet, and consequent AUTH packets follow the same Authentication
Method. The contents of the Authentication Data are defined by the Authentication
Method.

PUBLISH
Publish request sent from a publishing Client to the Broker or from the Broker to a
subscribing Client.

PUBACK
Response to a PUBLISH request with QoS level 1. PUBACK can be sent from the Broker to
a Client or from a Client to the Broker.

PUBREC
Response to a PUBLISH request with QoS level 2. PUBREC can be sent from the Broker to
a Client or from a Client to the Broker.

SUBSCRIBE
Subscribe request sent from a Client.

SUBACK
Subscribe acknowledgment from the Broker to the Client.

PINGREQ
A ping request sent from a Client to the Broker. It signals to the Broker that the Client is
alive and is used to confirm that the Broker is also alive. The "Keep Alive" period is set in
the CONNECT packet.

PINGRESP
Response sent by the Broker to the Client in response to PINGREQ. It indicates the Broker
is alive.

DISCONNECT
The DISCONNECT packet is the final MQTT Control Packet sent from the Client or the
Broker. It indicates the reason why the Network Connection is being closed. If the
Network Connection is closed without the Client first sending a DISCONNECT packet
with reason code 0x00 (Normal disconnection) and the MQTT Connection has a Will
Message, the Will Message is published.

Sengul & Kirby Standards Track Page 7

RFC 9431 MQTT-TLS Profile of ACE July 2023

Will
If the Network Connection is not closed normally, the Broker sends a last Will Message
for the Client if the Client provided one in its CONNECT packet. Situations in which the
Will Message is published include, but are not limited to, the following:

* an I/O error or network failure detected by the Broker,
* the Client fails to communicate within the Keep Alive period,

* the Client closes the Network Connection without first sending a DISCONNECT
packet with reason code 0x00 (Normal disconnection), and

* the Broker closes the Network Connection without first receiving a DISCONNECT
packet with reason code 0x00 (Normal disconnection).

If the Will Flag is set in the CONNECT flags, then the Payload of the CONNECT packet
includes information about the Will. The information consists of the Will Properties, Will
Topic, and Will Payload fields.

2. Authorizing Connection Requests

This section specifies how Client connections are authorized by the AS and verified by the MQTT
Broker. Figure 1 shows the basic protocol flows during connection setup. The token request and
response use the token endpoint at the AS, specified for HTTP-based interactions in Section 5.8 of
the ACE framework [RFC9200]. Steps (D) and (E) are optional and use the introspection endpoint
specified in Section 5.9 of the ACE framework [RFC9200]. The discussion in this document
assumes that the Client and the Broker use HTTPS to communicate with the AS via these
endpoints. The Client and the Broker use MQTT to communicate between them. The C-AS and
Broker-AS communications MAY be implemented using protocols other than HTTPS, e.g., COAP or
MQTT. Whatever protocol is used for the C-AS and Broker-AS communications MUST provide
mutual authentication, confidentiality protection, and integrity protection.

If the Client is resource constrained or does not support HTTPS, a separate Client Authorization
Server may carry out the token request on behalf of the Client (Figure 1, steps (A) and (B)) and,
later, onboard the Client with the token. The interactions between a Client and its Client
Authorization Server for token onboarding and support for MQTT-based token requests at the AS
are out of the scope of this document.

Sengul & Kirby Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc9200#section-5.8
https://www.rfc-editor.org/rfc/rfc9200#section-5.9

RFC 9431 MQTT-TLS Profile of ACE July 2023

o +
| Client |
I I
+---(A) Token request------ | Client - |
| Authorization |
| +-(B) Access token----- > Server Interface |
| | (HTTPS) |
I I | e I
I I I
Foofocomconosonos + | Pub/Sub Interface |
| Authorization | | (MQTT over TLS) |
| Server | Possooooooonooons Rooo=d:
O I
| & (C) Connection (F) Connection
| | request + response
| | access token |
I I I I
| | T +
| | | Broker |
| | | (MQTT over TLS) |
I I | I
| +(D) Introspection----- |
| request (optional)| RS-AS interface |
| | (HTTPS) |
+-(E) Introspection-------- > | e ___

response (optional)

Figure 1: Connection Setup

2.1. Client Token Request to the Authorization Server (AS)

The first step in the protocol flow (Figure 1, step (A)) is the token acquisition by the Client from
the AS. The Client and the AS MUST perform mutual authentication. The Client requests an access
token from the AS, as described in Section 5.8.1 of the ACE framework [RFC9200]. The document
follows the procedures defined in Section 3.2.1 of the DTLS profile [RFC9202] for raw public keys
(RPKs) [RFC7250]) and in Section 3.3.1 of [RFC7250] for pre-shared keys (PSKs). However, the
content type of the request is set to "application/ace+json", and the AS uses JSON in the Payload of
its responses to the Client and the RS. As explained earlier, implementations MAY also use the
"application/ace+chor" content type.

On receipt of the token request, the AS verifies the request. If the AS successfully verifies the
access token request and authorizes the Client for the indicated audience (i.e., RS) and scopes
(i.e., publish/subscribe permissions over topics, as described in Section 2.3), the AS issues an
access token (Figure 1, step (B)).

The response includes the parameters described in Section 5.8.2 of the ACE framework
[RFC9200]. For RPKs, the parameters are as described in Section 3.2.1 of the DTLS profile
[RFC9202]. For PSKs, the document follows Section 3.3.1 of the DTLS profile [RFC9202]. In both
cases, if the response contains an "ace_profile" parameter, this parameter is set to "mqtt_tls". The
returned token is a Proof-of-Possession (PoP) token by default.

Sengul & Kirby Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc9200#section-5.8.1
https://www.rfc-editor.org/rfc/rfc9202#section-3.2.1
https://www.rfc-editor.org/rfc/rfc7250#section-3.3.1
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.2
https://www.rfc-editor.org/rfc/rfc9202#section-3.2.1
https://www.rfc-editor.org/rfc/rfc9202#section-3.3.1

RFC 9431 MQTT-TLS Profile of ACE July 2023

This document follows [RFC7800] for PoP semantics for JWTs (CWTs MAY also be used). The AS
includes a "cnf" (confirmation) parameter in the PoP token to declare that the Client possesses a
particular key and the RS can cryptographically confirm that the Client has possession of that
key, as described in [RFC9201].

Note that the contents of the web tokens (including the "cnf" parameter) are to be consumed by
the RS and not the Client (the Client obtains the key information in a different manner). The RPK
case is handled as described in Section 3.2.1 of the DTLS profile [RFC9202]. For the PSK case, the
referenced procedures apply, with the following exceptions to accommodate JWT and JOSE use.
In this case, the AS adds a "cnf" parameter to the Access Information carrying a JSON Web Key
(JWK) [RFC7517] object that contains either the symmetric key itself or a key identifier that can
be used by the RS to determine the secret key it shares with the Client. The JWT is created as
explained in Section 7 of [RFC7519], and the JWT MUST include a JSON Web Encryption (JWE)
[RFC7516]. If a CWT/COSE is used, this information MUST be inside the "COSE_Key" object and
MUST be encrypted using a "COSE_Encrypt0" structure.

The AS returns error responses for JSON-based interactions following Section 5.2 of [RFC6749].
When CBOR is used, the interactions MUST implement the procedure described in Section 5.8.3 of
the ACE framework [RFC9200].

2.2. Client Connection Request to the Broker (C)

2.2.1. Overview of Client-RS Authentication Methods over TLS and MQTT

Unless the Client publishes and subscribes to only public topics, the Client and the Broker MUST
perform mutual authentication. The Client MUST authenticate to the Broker either over MQTT or
TLS before performing any other action. For MQTT, the options are "None" and "ace". For TLS, the
options are "Anon" for an anonymous client, and "Known(RPK/PSK)" for RPKs and PSKs,
respectively. The "None" and "Anon" options do not provide client authentication but can be used
either during authentication or in combination with authentication at the other layer. When the
Client uses TLS:Anon,MQTT:None, the Client can only publish or subscribe to public topics. Thus,
the client authentication procedures involve the following possible combinations:

TLS:Anon,MQTT:None:
This option is used only for the topics that do not require authorization, including the
"authz-info" topic. Publishing to the "authz-info" topic is described in Section 2.2.2.

TLS:Anon,MQTT:ace:
The token is transported inside the CONNECT packet and MUST be validated using one of
the methods described in Section 2.2.2. This option also supports a tokenless connection
request for AS discovery. As per the ACE framework [RFC9200], a separate step is needed
to determine whether the discovered AS URI is authorized to act as an AS.

TLS:Known(RPK/PSK),MQTT:none:
This specification supports client authentication with TLS with RPKs and PSKs, following
the procedures described in the DTLS profile [RFC9202]. For the RPK, the Client MUST
have published the token to the "authz-info" topic. For the PSK, the token MAY be

Sengul & Kirby Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc9202#section-3.2.1
https://www.rfc-editor.org/rfc/rfc7519#section-7
https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.3

RFC 9431 MQTT-TLS Profile of ACE July 2023

published to the "authz-info" topic or MAY be, alternatively, provided as a "PSK identity"
(e.g., an "identity" in the "identities" field in the Client's "pre_shared_key" extension in
TLS 1.3).

TLS:Known(RPK/PSK),MQTT:ace:
This option SHOULD NOT be chosen as the token transported in the CONNECT packet and
overwrites any permissions passed during the TLS authentication.

It is RECOMMENDED that the Client implements TLS:Anon,MQTT:ace as the first choice when
working with protected topics. However, MQTT v3.1.1 Clients that do not prefer to overload the
User Name and Password fields for ACE (as described in Section 6) MAY implement
TLS:Known(RPK/PSK),MQTT:none and, consequently, TLS:Anon,MQTT:None to submit their token
to "authz-info".

The Broker MUST support TLS:Anon,MQTT:ace. To support Clients with different capabilities, the
Broker MAY provide multiple client authentication options, e.g., support
TLS:Known(RPK),MQTT:none and TLS:Anon,MQTT:None, to enable RPK-based client
authentication.

The Client MUST authenticate the Broker during the TLS handshake. If the Client authentication
uses TLS:Known(RPK/PSK), then the Broker is authenticated using the respective method.
Otherwise, to authenticate the Broker, the Client MUST validate a public key from an X.509
certificate or an RPK from the Broker against the "rs_cnf" parameter in the token response,
which contains information about the public key used by the RS to authenticate if the token type
is "pop" and asymmetric keys are used as defined in [RFC9201]. The AS MAY include the
thumbprint of the RS's X.509 certificate in the "rs_cnf" (thumbprint, as defined in [RFC9360]). In
this case, the Client MUST validate the RS certificate against this thumbprint.

2.2.2. authz-info: The Authorization Information Topic

In the cases when the Client must transport the token to the Broker first, the Client connects to
the Broker to publish its token to the "authz-info" topic. The "authz-info" topic MUST only be
published (i.e., the Clients are not allowed to subscribe to it). "authz-info" is not protected, and
hence, the Client uses the TLS:Anon,MQTT:None option over a TLS connection. After publishing
the token, the Client disconnects from the Broker and is expected to reconnect using client
authentication over TLS (i.e., TLS:Known(RPK/PSK),MQTT:none).

The Broker stores and indexes all tokens received to the "authz-info" topic in its key store (similar
to the DTLS profile for ACE [RFC9202]). This profile follows the recommendation of Section 5.10.1
of the ACE framework [RFC9200] and expects that the Broker stores only one token per PoP key,
and any other token linked to the same key overwrites an existing token.

The Broker MUST verify the validity of the token (i.e., through local validation or introspection if
the token is a reference), as described in Section 2.2.5. If the token is not valid, the Broker MUST
discard the token.

Sengul & Kirby Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc9200#section-5.10.1

RFC 9431 MQTT-TLS Profile of ACE July 2023

Depending on the QoS level of the PUBLISH packet, the Broker returns the error response as a
PUBACK, PUBREC, or DISCONNECT packet. If the QoS level is equal to 0, and the token is not valid,
or if the claims cannot be obtained in the case of an introspected token, the Broker MUST send a
DISCONNECT packet with reason code 0x87 (Not authorized). If the PUBLISH Payload does not
parse to a token, the Broker MUST send a DISCONNECT with reason code 0x99 (Payload format
invalid).

If the QoS level of the PUBLISH packet is greater than or equal to 1, and the token is not valid, or
the claims cannot be obtained in the case of an introspected token, the Broker MUST send reason
code 0x87 (Not authorized) in the PUBACK or PUBREC. If the PUBLISH Payload does not parse to a
token, the PUBACK/PUBREC reason code is 0x99 (Payload format invalid).

When the Broker sends the "Not authorized" response, it must be noted that this corresponds to
the token being not valid and not that the actual PUBLISH packet was not authorized. Given that
the "authz-info" is a public topic, this response is not expected to cause confusion.

2.2.3. Client Authentication over TLS

This document supports TLS with raw public keys (RPKs) [RFC7250] and with pre-shared keys
(PSKs). The TLS session setup follows the DTLS profile for ACE [RFC9202], as the profile applies to
TLS equally well [RFC9430]. When there are exceptions to the DTLS profile, these are explicitly
stated in the document. If TLS 1.2 is used, [RFC7925] describes how TLS can be used for
constrained devices, alongside recommended cipher suites. Additionally, TLS 1.2
implementations MUST use the "Extended Main Secret" extension (terminology adopted from
[TLS-bis]) to incorporate the handshake transcript into the main secret [RFC7627]. TLS
implementations SHOULD use the Server Name Indication (SNI) [RFC6066] and Application-Layer
Protocol Negotiation (ALPN) [RFC7301] extensions so the TLS handshake authenticates as much
of the protocol context as possible.

2.2.3.1. Raw Public Key Mode

This document follows the procedures defined in Section 3.2.2 of the DTLS profile for ACE
[RFC9202] with the following exceptions. The Client MUST upload the access token to the Broker
using the method specified in Section 2.2.2 before initiating the handshake.

2.2.3.2. Pre-Shared Key Mode

This document follows the procedures defined in Section 3.3.2 of the DTLS profile for ACE
[RFC9202] with the following exceptions.

To use TLS 1.3 with pre-shared keys, the Client utilizes the PSK extension specified in [RFC8446]
using the key conveyed in the "cnf" parameter of the AS response. The same key is bound to the
access token in the "cnf” claim. The Client can upload the token, as specified in Section 2.2.2,
before initiating the handshake. When using a previously uploaded token, the Client MUST
indicate during the handshake which previously uploaded access token it intends to use. To do
S0, it MUST create a "COSE_Key" or "JWK" structure with the "kid" that was conveyed in the
"rs_cnf" claim in the token response from the AS and the key type "symmetric". This structure is

Sengul & Kirby Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc9202#section-3.2.2
https://www.rfc-editor.org/rfc/rfc9202#section-3.3.2

RFC 9431 MQTT-TLS Profile of ACE July 2023

then included as the only element in the "cnf" structure and the encoded value of that "cnf"
structure used as a PSK identity in TLS. As an alternative to the access token upload, the Client
can provide the most recent access token, JWT or CWT, as a PSK identity.

In contrast to the DTLS profile for ACE [RFC9202], a Client MAY omit support for the cipher suites
TLS_PSK_WITH_AES_128 CCM_8 and TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8. For TLS 1.2,
however, a client MUST support TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 for PSKs
[RFC8442] and TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 for RPKs [RFC8422], as
recommended in [RFC9325] (and adjusted to be a PSK cipher suite as appropriate).

2.2.4. Client Authentication over MQTT

2.2.4.1. Transporting the Access Token inside the MQTT CONNECT

This section describes how the Client transports the token to the Broker inside the CONNECT
packet. If this method is used, the Client TLS connection is expected to be anonymous, and the
Broker is authenticated during the TLS connection setup. The approach described in this section
is similar to an earlier proposal by Fremantle, et al. [Fremantle14].

After sending the CONNECT packet, the Client MUST wait to receive the CONNACK packet from
the Broker. The only packets it is allowed to send are DISCONNECT or AUTH that are in response
to the Broker AUTH. Similarly, except for a DISCONNECT and AUTH response from the Client, the
Broker MUST NOT process any packets before sending a CONNACK packet.

Figure 2 shows the structure of the MQTT CONNECT packet used in MQTT v5.0. A CONNECT
packet is composed of a Fixed Header, a Variable Header, and a Payload The Fixed Header
contains the Control Packet Type (CPT), Reserved, and Remaining Length fields. The Remaining
Length is a Variable Byte Integer that represents the number of bytes remaining within the
current Control Packet, including data in the Variable Header and the Payload. The Variable
Header contains the Protocol Name, Protocol Level, Connect flags, Keep Alive, and Properties
fields. The Connect flags in the Variable Header specify the properties of the MQTT Session. It
also indicates the presence or absence of some fields in the Payload. The Payload contains one or
more encoded fields, namely a unique Client Identifier for the Client, a Will Topic, Will Payload,
User Name, and Password. All but the Client Identifier can be omitted depending on the flags in
the Variable Header. The Client Identifier identifies the Client to the Broker and, therefore, is
unique for each Client. It must be noted that the Client Identifier is an unauthenticated identifier
used within the MQTT protocol and so is not bound to the access token.

Sengul & Kirby Standards Track Page 13

RFC 9431 MQTT-TLS Profile of ACE July 2023

0 8 16
it e +
|Protocol name length = 4 |
T . S +
| IMI IQI |
oo +
| T T |
it e +
|Proto