Internet Engineering Task Force (IETF) R. Fielding, Ed.

Request for Comments: 7231 Adobe
Obsoletes: 2616 J. Reschke, Ed.
Updates: 2817 greenbytes
Category: Standards Track June 2014

ISSN: 2070-1721

Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content
Abstract

The Hypertext Transfer Protocol (HTTP) is a stateless application-

level protocol for distributed, collaborative, hypertext information
systems. This document defines the semantics of HTTP/1.1 messages,
as expressed by request methods, request header fields, response
status codes, and response header fields, along with the payload of
messages (metadata and body content) and mechanisms for content
negotiation.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7231.

Fielding & Reschke Standards Track [Page 1]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Fielding & Reschke Standards Track [Page 2]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

Table of Contents

1. INtroduction ... 6
1.1. Conformance and Error Handlingcccccuvvveeeeee. 6
1.2. Syntax NOtationccoovviiiiiiiiiieiieeeeeeins 6
2. RESOUICESovvviiiiieiiiiiiiiiieeeee e 7
3. Representationsccoccvvvvieeereeee e 7
3.1. Representation Metadataccccvvvvvevennnnnnn. 8
3.1.1. Processing Representation Data 8
3.1.2. Encoding for Compression or Integrity 11
3.1.3. Audience Languageccccoeveeunrrineeenenn. 13
3.1.4. Identificationccoevvvveiniirennnen, 14
3.2. Representation Dataccccceoevvecvvvivieennnennnn. 17
3.3. Payload Semanticscccccevviiieeeeiniiieee e 17
3.4. Content Negotiationccccvvvveeeeiiiiieee e 18
3.4.1. Proactive Negotiationcccccccceeriiunnne 19
3.4.2. Reactive Negotiationccccceeeeririnnnnns 20
4. Request Methodscooovviiiiiiieeieeee e, 21
4.1. OVEIVIEW ..ot 21
4.2. Common Method Propertiescccceevviivieeennenn 22
4.2.1. Safe Methodscooooviiiiiiiiiiiiieeee, 22
4.2.2. Idempotent Methodscccccceiiiiiiiinnnn. 23
4.2.3. Cacheable Methodscccccovvvivreennnnen. 24
4.3. Method Definitionscccccveeeerieeeniieennnnen, 24
4.3.1. GET oo 24
4.32.HEAD ..cooiiiiiiiiiei, 25
4.3.3. POST it 25
4.3.4. PUT i 26
4.35. DELETE ..ottt 29
4.3.6. CONNECTooviiiiiiiieiiieeeee e 30
4.3.7. OPTIONS ..ot 31
4.3.8. TRACEooeiiieee e 32
5. Request Header Fieldsccccocvviviiiiiiieiciniiieee, 33
5.1. CoNtrolsccooiiiiiiiiiiieiiieeeee e 33
5.1.1. EXPECL vt 34
5.1.2. Max-Forwardsccccouvvennveeinnennninn, 36
5.2. Conditionalscccooveviiiniiinee e 36
5.3. Content Negotiationccceevveeeeiiiiieeeennn 37
5.3.1. Quality Valuesccocvivieiiiiineenn 37
5.3.2. ACCEPL vt 38
5.3.3. Accept-Charsetccccceeeeeiiniiiiiiiiineen. 40
5.3.4. Accept-Encodingcccceeveieeiiiiiiiiiin, 41
5.3.5. Accept-Languagecccceeeeeveeiiiiiinieeenns 42
5.4. Authentication Credentialsccccccceveeeviiicnnnnns 44
5.5. Request Contextcccceveeereeeiniiiniiinreeeen, 44
5.5. 1. FrOM e 44
5.5.2. Referer ...cccoccvviiiiiee e 45
5.5.3. User-Agentccoooovveviiiinnieieiiiiineeeeeeinn 46

Fielding & Reschke Standards Track [Page 3]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

6. Response Status Codesccccvveevvviviiciiviineeeeeeeeennn, 47
6.1. Overview of Status Codesccccceeevvviiivrrrnnnnnn. 48
6.2. Informational 1XXcccceeeviviiiiiiiiiinneeeeeenn. 50

6.2.1. 100 CONLINUEoevvreieeiiaaaaaeiiiiiiiieeeee 50
6.2.2. 101 Switching Protocolsccccceeereeenn. 50
6.3. SUCCESSTUI 2XX .vvvvviiiiiiiiie i 51
6.3.1. 200 OK ...ovviiiieiiiiiiee et 51
6.3.2. 201 Createdccccvvvvveieereeee e 52
6.3.3. 202 Acceptedcceeeeeiiiiiiiiee e 52
6.3.4. 203 Non-Authoritative Information 52
6.3.5. 204 NO COoNtenteeeeeeeeniiiiiinineeeeeenn. 53
6.3.6. 205 Reset Contentcocovvvvevevernnnnnns 53
6.4. RedireCtion 3XXcccevriieereniiiieeeeeiniiieeeennans 54
6.4.1. 300 Multiple Choicesccccevviiieeernnnnnn 55
6.4.2. 301 Moved Permanentlyccccceevviinieeennne 56
6.4.3. 302 FOUNd ...ocooviiiieeeiiiiee e 56
6.4.4. 303 See Otherccceeiiiiiiiiiiiiiieeeeee, 57
6.4.5. 305 USE ProXy ...ccvvvviiiiiiiiiiineeeeeiiiinenn, 58
6.4.6. 306 (Unused)ccccvvveeeereeeeeniieinnieen 58
6.4.7. 307 Temporary Redirectc.ccoccvvvveennnnn 58
6.5. Client Error 4XXcocccuveeeeeeieeeeee e 58
6.5.1. 400 Bad ReqUESLcceeeeeeeiiniiiiiiiiieeen, 58
6.5.2. 402 Payment Requiredccccvvveeeeeennnn. 59
6.5.3. 403 Forbiddenccccecieeiiiiiiieee, 59
6.5.4. 404 Not Foundccccceveviiviieieiniineen, 59
6.5.5. 405 Method Not Allowedcoccvvvvenneen. 59
6.5.6. 406 Not Acceptableccccovviieeinnn 60
6.5.7. 408 Request TIMEOULcoccvvviviieeeraeennn. 60
6.5.8. 409 Conflictcoeevviieiieiiiiiiiee i, 60
6.5.9. 410 GONE ..oovvviiiiiiie et 60
6.5.10. 411 Length Requiredccccceeveevviiiinnnns 61
6.5.11. 413 Payload Too Largeccccccuvveeevnunnenn. 61
6.5.12. 414 URI TOO LONG ..eoveevviiiieeeeciiiee e, 61
6.5.13. 415 Unsupported Media Typecccccceeerrrnnnee 62
6.5.14. 417 Expectation Failedceeueeeee 62
6.5.15. 426 Upgrade Requiredccccccvveveeernnnnns 62
6.6. Server Error 5XXoccccvveeeeeeiieeees e 62
6.6.1. 500 Internal Server Errorccccceeeveveennns 63
6.6.2. 501 Not Implementedcccoecvvereennnn 63
6.6.3. 502 Bad Gatewaycccccueeeeeereeeeeeninnnne 63
6.6.4. 503 Service Unavailablecccceeeee. 63
6.6.5. 504 Gateway Timeoutcccceeeevvveeunvrnnen, 63
6.6.6. 505 HTTP Version Not Supported 64
7. Response Header Fieldsccccovvviieiiniiieienniineen. 64
7.1. Control Datacoooeieiiiiiiiiieeee e 64
ed 7.1.1. Origination Dateccoooiivviiieeenennn. 65
7.1.2. LOCALION ...ovvvieiiiaieeiiiiiiiiieieeeee e 68
7.1.3. Retry-After ..o 69

Fielding & Reschke Standards Track [Page 4]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

A R TV £ oY RSN 70
7.2. Validator Header Fieldsccccccceeeeiiiiiininnnen, 71
7.3. Authentication Challengesccccoccuveeeeininnnnen. 72
7.4. Response CoNtextcccoevveieeeieieiiiiiiiiieeeeeeeees 72
742, AlIOW oo 72
742, SEIVEN oo 73
8. IANA Considerationsccccocveeeeeiiiieee e 73
8.1. Method RegiStryccoevviiiiiiiiiiiiieeiiiiieeeee 73
8.1.1. Procedurecoeeeeeeiiiiiiiiiiiiiiie, 74
8.1.2. Considerations for New Methods 74
8.1.3. Registrationsccccccveeeeneiiiiiiiiinen 75
8.2. Status Code RegiStrycocccvvvvieeeieeeeeeeieins 75
8.2.1. ProCcedureccccevvvieeieiiiieee e 75
8.2.2. Considerations for New Status Codes 76
8.2.3. Registrationsccceeveerivieeee e, 76
8.3. Header Field RegiStrycccccooviiiiiiiiiieennannnnn, 77
8.3.1. Considerations for New Header Fields 78
8.3.2. Registrationsccccceeeveeeeeeiiiiiiinnne, 80
8.4. Content Coding RegiStryccccceeeevivvicvinvnnnnnnn. 81
8.4.1. Procedureccccoeeeveiiiieiiiiiiiiiieee, 81
8.4.2. Registrationsccccveveerivvieeenniinnnn. 81
9. Security Considerationsccccuvieeeieeieeeeeninnne 81
9.1. Attacks Based on File and Path Namescc........ 82
9.2. Attacks Based on Command, Code, or Query Injection 82
9.3. Disclosure of Personal Information 83
9.4. Disclosure of Sensitive Information in URIs 83
9.5. Disclosure of Fragment after Redirects 84
9.6. Disclosure of Product Information 84
9.7. Browser Fingerprintingcccccccevvvvivvnieeenenn. 84
10. Acknowledgmentscccccevveeeeeeiiiiciiiiieee e 85
11. Referencesoccceevveiiiiiiie e 85
11.1. Normative Referencesccccccvvvvevvvvvvvrnvnnnnnnn. 85
11.2. Informative Referencesccoceeeeeeiieeiiinnnnnn. 86
Appendix A. Differences between HTTP and MIME 89
AL MIME-VEISIONuuviiiiiiiiiiiiiiiiiiiieeee e 89
A.2. Conversion to Canonical Formcccccoccveeennnee. 89
A.3. Conversion of Date Formatscccccceeeeeiinnnenen. 90
A.4. Conversion of Content-Encodingccccoccvveeeennns 90
A.5. Conversion of Content-Transfer-Encoding 90
A.6. MHTML and Line Length Limitationsc...c... 20
Appendix B. Changes from RFC 2616cccccccceeveeeninnns 91
Appendix C. Imported ABNFooooiiiiiiiiieeee e, 93
Appendix D. Collected ABNFcccovvvvveeeeiiiiiiieeee, 94
INAEX e 97

Fielding & Reschke Standards Track [Page 5]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

1. Introduction

Each Hypertext Transfer Protocol (HTTP) message is either a request
or aresponse. A server listens on a connection for a request,

parses each message received, interprets the message semantics in
relation to the identified request target, and responds to that

request with one or more response messages. A client constructs
request messages to communicate specific intentions, examines
received responses to see if the intentions were carried out, and
determines how to interpret the results. This document defines
HTTP/1.1 request and response semantics in terms of the architecture
defined in [RFC7230].

HTTP provides a uniform interface for interacting with a resource
(Section 2), regardless of its type, nature, or implementation, via
the manipulation and transfer of representations (Section 3).

HTTP semantics include the intentions defined by each request method
(Section 4), extensions to those semantics that might be described in
request header fields (Section 5), the meaning of status codes to
indicate a machine-readable response (Section 6), and the meaning of
other control data and resource metadata that might be given in
response header fields (Section 7).

This document also defines representation metadata that describe how
a payload is intended to be interpreted by a recipient, the request
header fields that might influence content selection, and the various
selection algorithms that are collectively referred to as "content
negotiation" (Section 3.4).

1.1. Conformance and Error Handling

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Conformance criteria and considerations regarding error handling are
defined in Section 2.5 of [RFC7230].

1.2. Syntax Notation

This specification uses the Augmented Backus-Naur Form (ABNF)
notation of [RFC5234] with a list extension, defined in Section 7 of
[RFC7230], that allows for compact definition of comma-separated
lists using a '# operator (similar to how the " operator indicates
repetition). Appendix C describes rules imported from other
documents. Appendix D shows the collected grammar with all list
operators expanded to standard ABNF notation.

Fielding & Reschke Standards Track [Page 6]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

This specification uses the terms "character", "character encoding

scheme"”, "charset", and "protocol element" as they are defined in
[RFC6365].

2. Resources

The target of an HTTP request is called a "resource". HTTP does not
limit the nature of a resource; it merely defines an interface that
might be used to interact with resources. Each resource is

identified by a Uniform Resource Identifier (URI), as described in
Section 2.7 of [RFC7230].

When a client constructs an HTTP/1.1 request message, it sends the
target URI in one of various forms, as defined in (Section 5.3 of
[RFC7230]). When a request is received, the server reconstructs an
effective request URI for the target resource (Section 5.5 of
[RFC7230]).

One design goal of HTTP is to separate resource identification from
request semantics, which is made possible by vesting the request
semantics in the request method (Section 4) and a few
request-modifying header fields (Section 5). If there is a conflict
between the method semantics and any semantic implied by the URI
itself, as described in Section 4.2.1, the method semantics take
precedence.

3. Representations

Considering that a resource could be anything, and that the uniform
interface provided by HTTP is similar to a window through which one
can observe and act upon such a thing only through the communication
of messages to some independent actor on the other side, an
abstraction is needed to represent ("take the place of") the current

or desired state of that thing in our communications. That

abstraction is called a representation [REST].

For the purposes of HTTP, a "representation” is information that is
intended to reflect a past, current, or desired state of a given
resource, in a format that can be readily communicated via the
protocol, and that consists of a set of representation metadata and a
potentially unbounded stream of representation data.

An origin server might be provided with, or be capable of generating,
multiple representations that are each intended to reflect the

current state of a target resource. In such cases, some algorithm is
used by the origin server to select one of those representations as
most applicable to a given request, usually based on content
negotiation. This "selected representation” is used to provide the

Fielding & Reschke Standards Track [Page 7]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

data and metadata for evaluating conditional requests [RFC7232] and
constructing the payload for 200 (OK) and 304 (Not Modified)
responses to GET (Section 4.3.1).

3.1. Representation Metadata

Representation header fields provide metadata about the
representation. When a message includes a payload body, the
representation header fields describe how to interpret the
representation data enclosed in the payload body. In a response to a
HEAD request, the representation header fields describe the
representation data that would have been enclosed in the payload body
if the same request had been a GET.

The following header fields convey representation metadata:

+ + +

| Header Field Name | Defined in... |
+ + +

| Content-Type | Section 3.1.1.5 |

| Content-Encoding | Section 3.1.2.2 |
| Content-Language | Section 3.1.3.2 |

| Content-Location | Section 3.1.4.2 |
+ + +

3.1.1. Processing Representation Data
3.1.1.1. Media Type

HTTP uses Internet media types [RFC2046] in the Content-Type
(Section 3.1.1.5) and Accept (Section 5.3.2) header fields in order

to provide open and extensible data typing and type negotiation.
Media types define both a data format and various processing models:
how to process that data in accordance with each context in which it
is received.

media-type = type "/" subtype *(OWS ";" OWS parameter)
type = token
subtype =token

The type/subtype MAY be followed by parameters in the form of
name=value pairs.

parameter = token "=" (token / quoted-string)

Fielding & Reschke Standards Track [Page 8]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

The type, subtype, and parameter name tokens are case-insensitive.
Parameter values might or might not be case-sensitive, depending on
the semantics of the parameter name. The presence or absence of a
parameter might be significant to the processing of a media-type,
depending on its definition within the media type registry.

A parameter value that matches the token production can be
transmitted either as a token or within a quoted-string. The quoted
and unquoted values are equivalent. For example, the following
examples are all equivalent, but the first is preferred for
consistency:

text/html;charset=utf-8
text/html;charset=UTF-8
Text/HTML;Charset="utf-8"
text/html; charset="utf-8"

Internet media types ought to be registered with IANA according to
the procedures defined in [BCP13].

Note: Unlike some similar constructs in other header fields, media
type parameters do not allow whitespace (even "bad" whitespace)
around the "=" character.

3.1.1.2. Charset

HTTP uses charset names to indicate or negotiate the character
encoding scheme of a textual representation [RFC6365]. A charset is
identified by a case-insensitive token.

charset = token

Charset names ought to be registered in the IANA "Character Sets"
registry (<http://www.iana.org/assignments/character-sets>) according
to the procedures defined in [RFC2978].

3.1.1.3. Canonicalization and Text Defaults

Internet media types are registered with a canonical form in order to

be interoperable among systems with varying native encoding formats.
Representations selected or transferred via HTTP ought to be in
canonical form, for many of the same reasons described by the
Multipurpose Internet Mail Extensions (MIME) [RFC2045]. However, the
performance characteristics of email deployments (i.e., store and
forward messages to peers) are significantly different from those
common to HTTP and the Web (server-based information services).
Furthermore, MIME’s constraints for the sake of compatibility with

older mail transfer protocols do not apply to HTTP (see Appendix A).

Fielding & Reschke Standards Track [Page 9]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

MIME's canonical form requires that media subtypes of the "text" type
use CRLF as the text line break. HTTP allows the transfer of text
media with plain CR or LF alone representing a line break, when such
line breaks are consistent for an entire representation. An HTTP
sender MAY generate, and a recipient MUST be able to parse, line
breaks in text media that consist of CRLF, bare CR, or bare LF. In
addition, text media in HTTP is not limited to charsets that use

octets 13 and 10 for CR and LF, respectively. This flexibility
regarding line breaks applies only to text within a representation

that has been assigned a "text" media type; it does not apply to
"multipart” types or HTTP elements outside the payload body (e.g.,
header fields).

If a representation is encoded with a content-coding, the underlying
data ought to be in a form defined above prior to being encoded.

3.1.1.4. Multipart Types

MIME provides for a number of "multipart” types -- encapsulations of
one or more representations within a single message body. All
multipart types share a common syntax, as defined in Section 5.1.1 of
[RFC2046], and include a boundary parameter as part of the media type
value. The message body is itself a protocol element; a sender MUST
generate only CRLF to represent line breaks between body parts.

HTTP message framing does not use the multipart boundary as an
indicator of message body length, though it might be used by
implementations that generate or process the payload. For example,
the "multipart/form-data” type is often used for carrying form data

in a request, as described in [RFC2388], and the "multipart/
byteranges" type is defined by this specification for use in some 206
(Partial Content) responses [RFC7233].

3.1.1.5. Content-Type

The "Content-Type" header field indicates the media type of the
associated representation: either the representation enclosed in the
message payload or the selected representation, as determined by the
message semantics. The indicated media type defines both the data
format and how that data is intended to be processed by a recipient,
within the scope of the received message semantics, after any content
codings indicated by Content-Encoding are decoded.

Content-Type = media-type

Fielding & Reschke Standards Track [Page 10]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

Media types are defined in Section 3.1.1.1. An example of the field
is

Content-Type: text/html; charset=1SO-8859-4

A sender that generates a message containing a payload body SHOULD

generate a Content-Type header field in that message unless the
intended media type of the enclosed representation is unknown to the
sender. If a Content-Type header field is not present, the recipient
MAY either assume a media type of "application/octet-stream"
([RFC2046], Section 4.5.1) or examine the data to determine its type.

In practice, resource owners do not always properly configure their
origin server to provide the correct Content-Type for a given
representation, with the result that some clients will examine a
payload’s content and override the specified type. Clients that do

so risk drawing incorrect conclusions, which might expose additional
security risks (e.g., "privilege escalation"). Furthermore, itis
impossible to determine the sender’s intent by examining the data
format: many data formats match multiple media types that differ only
in processing semantics. Implementers are encouraged to provide a
means of disabling such "content sniffing" when it is used.

3.1.2. Encoding for Compression or Integrity
3.1.2.1. Content Codings

Content coding values indicate an encoding transformation that has
been or can be applied to a representation. Content codings are
primarily used to allow a representation to be compressed or
otherwise usefully transformed without losing the identity of its
underlying media type and without loss of information. Frequently,
the representation is stored in coded form, transmitted directly, and
only decoded by the final recipient.

content-coding = token
All content-coding values are case-insensitive and ought to be
registered within the "HTTP Content Coding Registry", as defined in

Section 8.4. They are used in the Accept-Encoding (Section 5.3.4)
and Content-Encoding (Section 3.1.2.2) header fields.

Fielding & Reschke Standards Track [Page 11]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

The following content-coding values are defined by this
specification:

compress (and x-compress): See Section 4.2.1 of [RFC7230].
deflate: See Section 4.2.2 of [RFC7230].
gzip (and x-gzip): See Section 4.2.3 of [RFC7230].

3.1.2.2. Content-Encoding

The "Content-Encoding" header field indicates what content codings
have been applied to the representation, beyond those inherent in the
media type, and thus what decoding mechanisms have to be applied in
order to obtain data in the media type referenced by the Content-Type
header field. Content-Encoding is primarily used to allow a
representation’s data to be compressed without losing the identity of
its underlying media type.

Content-Encoding = 1#content-coding
An example of its use is
Content-Encoding: gzip

If one or more encodings have been applied to a representation, the
sender that applied the encodings MUST generate a Content-Encoding
header field that lists the content codings in the order in which

they were applied. Additional information about the encoding
parameters can be provided by other header fields not defined by this
specification.

Unlike Transfer-Encoding (Section 3.3.1 of [RFC7230]), the codings
listed in Content-Encoding are a characteristic of the
representation; the representation is defined in terms of the coded
form, and all other metadata about the representation is about the
coded form unless otherwise noted in the metadata definition.
Typically, the representation is only decoded just prior to rendering
or analogous usage.

If the media type includes an inherent encoding, such as a data
format that is always compressed, then that encoding would not be
restated in Content-Encoding even if it happens to be the same
algorithm as one of the content codings. Such a content coding would
only be listed if, for some bizarre reason, it is applied a second

time to form the representation. Likewise, an origin server might
choose to publish the same data as multiple representations that
differ only in whether the coding is defined as part of Content-Type

Fielding & Reschke Standards Track [Page 12]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

or Content-Encoding, since some user agents will behave differently
in their handling of each response (e.g., open a "Save as ..." dialog
instead of automatic decompression and rendering of content).

An origin server MAY respond with a status code of 415 (Unsupported
Media Type) if a representation in the request message has a content
coding that is not acceptable.

3.1.3. Audience Language
3.1.3.1. Language Tags

A language tag, as defined in [RFC5646], identifies a natural
language spoken, written, or otherwise conveyed by human beings for
communication of information to other human beings. Computer
languages are explicitly excluded.

HTTP uses language tags within the Accept-Language and
Content-Language header fields. Accept-Language uses the broader
language-range production defined in Section 5.3.5, whereas
Content-Language uses the language-tag production defined below.

language-tag = <Language-Tag, see [RFC5646], Section 2.1>

A language tag is a sequence of one or more case-insensitive subtags,
each separated by a hyphen character ("-", %x2D). In most cases, a
language tag consists of a primary language subtag that identifies a
broad family of related languages (e.g., "en" = English), which is
optionally followed by a series of subtags that refine or narrow that
language’s range (e.g., "en-CA" = the variety of English as
communicated in Canada). Whitespace is not allowed within a language
tag. Example tags include:

fr, en-US, es-419, az-Arab, x-pig-latin, man-Nkoo-GN
See [RFC5646] for further information.
3.1.3.2. Content-Language
The "Content-Language" header field describes the natural language(s)
of the intended audience for the representation. Note that this
might not be equivalent to all the languages used within the

representation.

Content-Language = 1#language-tag

Fielding & Reschke Standards Track [Page 13]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

Language tags are defined in Section 3.1.3.1. The primary purpose of
Content-Language is to allow a user to identify and differentiate
representations according to the users’ own preferred language.
Thus, if the content is intended only for a Danish-literate audience,

the appropriate field is

Content-Language: da

If no Content-Language is specified, the default is that the content
is intended for all language audiences. This might mean that the

sender does not consider it to be specific to any natural language,
or that the sender does not know for which language it is intended.

Multiple languages MAY be listed for content that is intended for
multiple audiences. For example, a rendition of the "Treaty of
Waitangi”, presented simultaneously in the original Maori and English
versions, would call for

Content-Language: mi, en

However, just because multiple languages are present within a
representation does not mean that it is intended for multiple
linguistic audiences. An example would be a beginner’s language
primer, such as "A First Lesson in Latin", which is clearly intended
to be used by an English-literate audience. In this case, the
Content-Language would properly only include "en".

Content-Language MAY be applied to any media type -- it is not
limited to textual documents.

3.1.4. Identification
3.1.4.1. Identifying a Representation

When a complete or partial representation is transferred in a message
payload, it is often desirable for the sender to supply, or the

recipient to determine, an identifier for a resource corresponding to
that representation.

For a request message:

o If the request has a Content-Location header field, then the
sender asserts that the payload is a representation of the
resource identified by the Content-Location field-value. However,
such an assertion cannot be trusted unless it can be verified by
other means (not defined by this specification). The information
might still be useful for revision history links.

Fielding & Reschke Standards Track [Page 14]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

o Otherwise, the payload is unidentified.

For a response message, the following rules are applied in order
until a match is found:

1. If the request method is GET or HEAD and the response status code
is 200 (OK), 204 (No Content), 206 (Partial Content), or 304 (Not
Modified), the payload is a representation of the resource
identified by the effective request URI (Section 5.5 of
[RFC7230]).

2. If the request method is GET or HEAD and the response status code
is 203 (Non-Authoritative Information), the payload is a
potentially modified or enhanced representation of the target
resource as provided by an intermediary.

3. If the response has a Content-Location header field and its
field-value is a reference to the same URI as the effective
request URI, the payload is a representation of the resource
identified by the effective request URI.

4. If the response has a Content-Location header field and its
field-value is a reference to a URI different from the effective
request URI, then the sender asserts that the payload is a
representation of the resource identified by the Content-Location
field-value. However, such an assertion cannot be trusted unless
it can be verified by other means (not defined by this
specification).

5. Otherwise, the payload is unidentified.
3.1.4.2. Content-Location

The "Content-Location" header field references a URI that can be used
as an identifier for a specific resource corresponding to the

representation in this message’s payload. In other words, if one

were to perform a GET request on this URI at the time of this

message’s generation, then a 200 (OK) response would contain the same
representation that is enclosed as payload in this message.

Content-Location = absolute-URI / partial-URI

The Content-Location value is not a replacement for the effective
Request URI (Section 5.5 of [RFC7230]). It is representation
metadata. It has the same syntax and semantics as the header field
of the same name defined for MIME body parts in Section 4 of
[RFC2557]. However, its appearance in an HTTP message has some
special implications for HTTP recipients.

Fielding & Reschke Standards Track [Page 15]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

If Content-Location is included in a 2xx (Successful) response
message and its value refers (after conversion to absolute form) to a
URI that is the same as the effective request URI, then the recipient
MAY consider the payload to be a current representation of that
resource at the time indicated by the message origination date. For
a GET (Section 4.3.1) or HEAD (Section 4.3.2) request, this is the
same as the default semantics when no Content-Location is provided by
the server. For a state-changing request like PUT (Section 4.3.4) or
POST (Section 4.3.3), it implies that the server’s response contains
the new representation of that resource, thereby distinguishing it
from representations that might only report about the action (e.g.,

"It worked!"). This allows authoring applications to update their

local copies without the need for a subsequent GET request.

If Content-Location is included in a 2xx (Successful) response
message and its field-value refers to a URI that differs from the
effective request URI, then the origin server claims that the URI is
an identifier for a different resource corresponding to the enclosed
representation. Such a claim can only be trusted if both identifiers
share the same resource owner, which cannot be programmatically
determined via HTTP.

o For aresponse to a GET or HEAD request, this is an indication
that the effective request URI refers to a resource that is
subject to content negotiation and the Content-Location
field-value is a more specific identifier for the selected
representation.

o For a 201 (Created) response to a state-changing method, a
Content-Location field-value that is identical to the Location
field-value indicates that this payload is a current
representation of the newly created resource.

o Otherwise, such a Content-Location indicates that this payload is
a representation reporting on the requested action’s status and
that the same report is available (for future access with GET) at
the given URI. For example, a purchase transaction made via a
POST request might include a receipt document as the payload of
the 200 (OK) response; the Content-Location field-value provides
an identifier for retrieving a copy of that same receipt in the
future.

A user agent that sends Content-Location in a request message is
stating that its value refers to where the user agent originally
obtained the content of the enclosed representation (prior to any
modifications made by that user agent). In other words, the user
agent is providing a back link to the source of the original
representation.

Fielding & Reschke Standards Track [Page 16]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

An origin server that receives a Content-Location field in a request
message MUST treat the information as transitory request context
rather than as metadata to be saved verbatim as part of the
representation. An origin server MAY use that context to guide in
processing the request or to save it for other uses, such as within
source links or versioning metadata. However, an origin server MUST
NOT use such context information to alter the request semantics.

For example, if a client makes a PUT request on a negotiated resource
and the origin server accepts that PUT (without redirection), then

the new state of that resource is expected to be consistent with the
one representation supplied in that PUT; the Content-Location cannot
be used as a form of reverse content selection identifier to update

only one of the negotiated representations. If the user agent had
wanted the latter semantics, it would have applied the PUT directly

to the Content-Location URI.

3.2. Representation Data

The representation data associated with an HTTP message is either
provided as the payload body of the message or referred to by the
message semantics and the effective request URI. The representation
data is in a format and encoding defined by the representation
metadata header fields.

The data type of the representation data is determined via the header
fields Content-Type and Content-Encoding. These define a two-layer,
ordered encoding model:

representation-data := Content-Encoding(Content-Type(bits))
3.3. Payload Semantics

Some HTTP messages transfer a complete or partial representation as
the message "payload". In some cases, a payload might contain only
the associated representation’s header fields (e.g., responses to
HEAD) or only some part(s) of the representation data (e.g., the 206
(Partial Content) status code).

The purpose of a payload in a request is defined by the method
semantics. For example, a representation in the payload of a PUT
request (Section 4.3.4) represents the desired state of the target
resource if the request is successfully applied, whereas a
representation in the payload of a POST request (Section 4.3.3)
represents information to be processed by the target resource.

Fielding & Reschke Standards Track [Page 17]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

In a response, the payload’s purpose is defined by both the request
method and the response status code. For example, the payload of a
200 (OK) response to GET (Section 4.3.1) represents the current state
of the target resource, as observed at the time of the message
origination date (Section 7.1.1.2), whereas the payload of the same
status code in a response to POST might represent either the
processing result or the new state of the target resource after

applying the processing. Response messages with an error status code
usually contain a payload that represents the error condition, such
that it describes the error state and what next steps are suggested

for resolving it.

Header fields that specifically describe the payload, rather than the
associated representation, are referred to as "payload header
fields". Payload header fields are defined in other parts of this
specification, due to their impact on message parsing.

+ + +
| Header Field Name | Defined in... |
+ + +

| Content-Length | Section 3.3.2 of [RFC7230] |
| Content-Range | Section 4.2 of [RFC7233] |

| Trailer | Section 4.4 of [RFC7230] |
| Transfer-Encoding | Section 3.3.1 of [RFC7230] |
+ + +

3.4. Content Negotiation

When responses convey payload information, whether indicating a
success or an error, the origin server often has different ways of
representing that information; for example, in different formats,
languages, or encodings. Likewise, different users or user agents
might have differing capabilities, characteristics, or preferences

that could influence which representation, among those available,
would be best to deliver. For this reason, HTTP provides mechanisms
for content negotiation.

This specification defines two patterns of content negotiation that
can be made visible within the protocol: "proactive”, where the
server selects the representation based upon the user agent’s stated
preferences, and "reactive" negotiation, where the server provides a
list of representations for the user agent to choose from. Other
patterns of content negotiation include "conditional content", where
the representation consists of multiple parts that are selectively
rendered based on user agent parameters, "active content”, where the
representation contains a script that makes additional (more
specific) requests based on the user agent characteristics, and
"Transparent Content Negotiation" ([RFC2295]), where content

Fielding & Reschke Standards Track [Page 18]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

selection is performed by an intermediary. These patterns are not
mutually exclusive, and each has trade-offs in applicability and
practicality.

Note that, in all cases, HTTP is not aware of the resource semantics.
The consistency with which an origin server responds to requests,
over time and over the varying dimensions of content negotiation, and
thus the "sameness" of a resource’s observed representations over
time, is determined entirely by whatever entity or algorithm selects

or generates those responses. HTTP pays no attention to the man
behind the curtain.

3.4.1. Proactive Negotiation

When content negotiation preferences are sent by the user agent in a
request to encourage an algorithm located at the server to select the
preferred representation, it is called proactive negotiation (a.k.a.,
server-driven negotiation). Selection is based on the available
representations for a response (the dimensions over which it might
vary, such as language, content-coding, etc.) compared to various
information supplied in the request, including both the explicit
negotiation fields of Section 5.3 and implicit characteristics, such

as the client’s network address or parts of the User-Agent field.

Proactive negotiation is advantageous when the algorithm for
selecting from among the available representations is difficult to
describe to a user agent, or when the server desires to send its
"best guess" to the user agent along with the first response (hoping
to avoid the round trip delay of a subsequent request if the "best
guess" is good enough for the user). In order to improve the
server's guess, a user agent MAY send request header fields that
describe its preferences.

Proactive negotiation has serious disadvantages:

o lItis impossible for the server to accurately determine what might
be "best" for any given user, since that would require complete
knowledge of both the capabilities of the user agent and the
intended use for the response (e.g., does the user want to view it
on screen or print it on paper?);

0 Having the user agent describe its capabilities in every request
can be both very inefficient (given that only a small percentage
of responses have multiple representations) and a potential risk
to the user’s privacy;

o It complicates the implementation of an origin server and the
algorithms for generating responses to a request; and,

Fielding & Reschke Standards Track [Page 19]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

o It limits the reusability of responses for shared caching.

A user agent cannot rely on proactive negotiation preferences being
consistently honored, since the origin server might not implement
proactive negotiation for the requested resource or might decide that
sending a response that doesn’t conform to the user agent’'s
preferences is better than sending a 406 (Not Acceptable) response.

A Vary header field (Section 7.1.4) is often sent in a response
subject to proactive negotiation to indicate what parts of the
request information were used in the selection algorithm.

3.4.2. Reactive Negotiation

With reactive negotiation (a.k.a., agent-driven negotiation),
selection of the best response representation (regardless of the
status code) is performed by the user agent after receiving an
initial response from the origin server that contains a list of
resources for alternative representations. If the user agent is not
satisfied by the initial response representation, it can perform a
GET request on one or more of the alternative resources, selected
based on metadata included in the list, to obtain a different form of
representation for that response. Selection of alternatives might be
performed automatically by the user agent or manually by the user
selecting from a generated (possibly hypertext) menu.

Note that the above refers to representations of the response, in
general, not representations of the resource. The alternative
representations are only considered representations of the target
resource if the response in which those alternatives are provided has
the semantics of being a representation of the target resource (e.g.,
a 200 (OK) response to a GET request) or has the semantics of
providing links to alternative representations for the target

resource (e.g., a 300 (Multiple Choices) response to a GET request).

A server might choose not to send an initial representation, other
than the list of alternatives, and thereby indicate that reactive
negotiation by the user agent is preferred. For example, the
alternatives listed in responses with the 300 (Multiple Choices) and
406 (Not Acceptable) status codes include information about the
available representations so that the user or user agent can react by
making a selection.

Reactive negotiation is advantageous when the response would vary
over commonly used dimensions (such as type, language, or encoding),
when the origin server is unable to determine a user agent’s

capabilities from examining the request, and generally when public
caches are used to distribute server load and reduce network usage.

Fielding & Reschke Standards Track [Page 20]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

Reactive negotiation suffers from the disadvantages of transmitting a
list of alternatives to the user agent, which degrades user-perceived
latency if transmitted in the header section, and needing a second
request to obtain an alternate representation. Furthermore, this
specification does not define a mechanism for supporting automatic
selection, though it does not prevent such a mechanism from being
developed as an extension.

4. Request Methods
4.1. Overview

The request method token is the primary source of request semantics;
it indicates the purpose for which the client has made this request
and what is expected by the client as a successful result.

The request method’s semantics might be further specialized by the
semantics of some header fields when present in a request (Section 5)
if those additional semantics do not conflict with the method. For
example, a client can send conditional request header fields

(Section 5.2) to make the requested action conditional on the current
state of the target resource ([RFC7232]).

method = token

HTTP was originally designed to be usable as an interface to
distributed object systems. The request method was envisioned as
applying semantics to a target resource in much the same way as
invoking a defined method on an identified object would apply
semantics. The method token is case-sensitive because it might be
used as a gateway to object-based systems with case-sensitive method
names.

Unlike distributed objects, the standardized request methods in HTTP
are not resource-specific, since uniform interfaces provide for

better visibility and reuse in network-based systems [REST]. Once
defined, a standardized method ought to have the same semantics when
applied to any resource, though each resource determines for itself
whether those semantics are implemented or allowed.

This specification defines a number of standardized methods that are
commonly used in HTTP, as outlined by the following table. By
convention, standardized methods are defined in all-uppercase
US-ASCII letters.

Fielding & Reschke Standards Track [Page 21]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

+ + + +
| Method | Description | Sec. |

+ + + +

| GET | Transfer a current representation of the target | 4.3.1 |
| | resource.

| HEAD | Same as GET, but only transfer the status line | 4.3.2 |
| | and header section.

| POST | Perform resource-specific processing onthe |4.3.3|
| | request payload.

PUT	Replace all current representations of the	4.3.4
	target resource with the request payload.	
DELETE	Remove all current representations of the	4.3.5

| | target resource.

| CONNECT | Establish a tunnel to the server identified by | 4.3.6 |

| | the target resource. |

| OPTIONS | Describe the communication options for the | 4.3.7 |

| | target resource. | |

| TRACE | Perform a message loop-back test along the path | 4.3.8 |
| | to the target resource. |

+ + + +

All general-purpose servers MUST support the methods GET and HEAD.
All other methods are OPTIONAL.

Additional methods, outside the scope of this specification, have
been standardized for use in HTTP. All such methods ought to be
registered within the "Hypertext Transfer Protocol (HTTP) Method
Registry" maintained by IANA, as defined in Section 8.1.

The set of methods allowed by a target resource can be listed in an
Allow header field (Section 7.4.1). However, the set of allowed
methods can change dynamically. When a request method is received
that is unrecognized or not implemented by an origin server, the

origin server SHOULD respond with the 501 (Not Implemented) status
code. When a request method is received that is known by an origin
server but not allowed for the target resource, the origin server
SHOULD respond with the 405 (Method Not Allowed) status code.

4.2. Common Method Properties
4.2.1. Safe Methods

Request methods are considered "safe" if their defined semantics are
essentially read-only; i.e., the client does not request, and does

not expect, any state change on the origin server as a result of
applying a safe method to a target resource. Likewise, reasonable
use of a safe method is not expected to cause any harm, loss of
property, or unusual burden on the origin server.

Fielding & Reschke Standards Track [Page 22]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

This definition of safe methods does not prevent an implementation
from including behavior that is potentially harmful, that is not
entirely read-only, or that causes side effects while invoking a safe
method. What is important, however, is that the client did not
request that additional behavior and cannot be held accountable for
it. For example, most servers append request information to access
log files at the completion of every response, regardless of the
method, and that is considered safe even though the log storage might
become full and crash the server. Likewise, a safe request initiated
by selecting an advertisement on the Web will often have the side
effect of charging an advertising account.

Of the request methods defined by this specification, the GET, HEAD,
OPTIONS, and TRACE methods are defined to be safe.

The purpose of distinguishing between safe and unsafe methods is to
allow automated retrieval processes (spiders) and cache performance
optimization (pre-fetching) to work without fear of causing harm. In
addition, it allows a user agent to apply appropriate constraints on

the automated use of unsafe methods when processing potentially
untrusted content.

A user agent SHOULD distinguish between safe and unsafe methods when
presenting potential actions to a user, such that the user can be
made aware of an unsafe action before it is requested.

When a resource is constructed such that parameters within the
effective request URI have the effect of selecting an action, it is

the resource owner’s responsibility to ensure that the action is
consistent with the request method semantics. For example, it is
common for Web-based content editing software to use actions within
guery parameters, such as "page?do=delete". If the purpose of such a
resource is to perform an unsafe action, then the resource owner MUST
disable or disallow that action when it is accessed using a safe

request method. Failure to do so will result in unfortunate side

effects when automated processes perform a GET on every URI reference
for the sake of link maintenance, pre-fetching, building a search

index, etc.

4.2.2. ldempotent Methods

A request method is considered "idempotent"” if the intended effect on
the server of multiple identical requests with that method is the

same as the effect for a single such request. Of the request methods
defined by this specification, PUT, DELETE, and safe request methods
are idempotent.

Fielding & Reschke Standards Track [Page 23]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

Like the definition of safe, the idempotent property only applies to
what has been requested by the user; a server is free to log each
request separately, retain a revision control history, or implement
other non-idempotent side effects for each idempotent request.

Idempotent methods are distinguished because the request can be
repeated automatically if a communication failure occurs before the
client is able to read the server’s response. For example, if a

client sends a PUT request and the underlying connection is closed
before any response is received, then the client can establish a new
connection and retry the idempotent request. It knows that repeating
the request will have the same intended effect, even if the original
request succeeded, though the response might differ.

4.2.3. Cacheable Methods

Request methods can be defined as "cacheable" to indicate that
responses to them are allowed to be stored for future reuse; for
specific requirements see [RFC7234]. In general, safe methods that
do not depend on a current or authoritative response are defined as
cacheable; this specification defines GET, HEAD, and POST as
cacheable, although the overwhelming majority of cache
implementations only support GET and HEAD.

4.3. Method Definitions
4.3.1. GET

The GET method requests transfer of a current selected representation
for the target resource. GET is the primary mechanism of information
retrieval and the focus of almost all performance optimizations.

Hence, when people speak of retrieving some identifiable information
via HTTP, they are generally referring to making a GET request.

It is tempting to think of resource identifiers as remote file system
pathnames and of representations as being a copy of the contents of
such files. In fact, that is how many resources are implemented (see
Section 9.1 for related security considerations). However, there are
no such limitations in practice. The HTTP interface for a resource

is just as likely to be implemented as a tree of content objects, a
programmatic view on various database records, or a gateway to other
information systems. Even when the URI mapping mechanism is tied to
a file system, an origin server might be configured to execute the

files with the request as input and send the output as the
representation rather than transfer the files directly. Regardless,

only the origin server needs to know how each of its resource

Fielding & Reschke Standards Track [Page 24]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

identifiers corresponds to an implementation and how each
implementation manages to select and send a current representation of
the target resource in a response to GET.

A client can alter the semantics of GET to be a "range request",
requesting transfer of only some part(s) of the selected
representation, by sending a Range header field in the request
([RFC7233)).

A payload within a GET request message has no defined semantics;
sending a payload body on a GET request might cause some existing
implementations to reject the request.

The response to a GET request is cacheable; a cache MAY use it to
satisfy subsequent GET and HEAD requests unless otherwise indicated
by the Cache-Control header field (Section 5.2 of [RFC7234]).

4.3.2. HEAD

The HEAD method is identical to GET except that the server MUST NOT
send a message body in the response (i.e., the response terminates at
the end of the header section). The server SHOULD send the same
header fields in response to a HEAD request as it would have sent if

the request had been a GET, except that the payload header fields
(Section 3.3) MAY be omitted. This method can be used for obtaining
metadata about the selected representation without transferring the
representation data and is often used for testing hypertext links for
validity, accessibility, and recent modification.

A payload within a HEAD request message has no defined semantics;
sending a payload body on a HEAD request might cause some existing
implementations to reject the request.

The response to a HEAD request is cacheable; a cache MAY use it to
satisfy subsequent HEAD requests unless otherwise indicated by the
Cache-Control header field (Section 5.2 of [RFC7234]). A HEAD
response might also have an effect on previously cached responses to
GET,; see Section 4.3.5 of [RFC7234].

4.3.3. POST
The POST method requests that the target resource process the
representation enclosed in the request according to the resource’s
own specific semantics. For example, POST is used for the following
functions (among others):

o Providing a block of data, such as the fields entered into an HTML
form, to a data-handling process;

Fielding & Reschke Standards Track [Page 25]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

0 Posting a message to a bulletin board, newsgroup, mailing list,
blog, or similar group of articles;

o Creating a new resource that has yet to be identified by the
origin server; and

o Appending data to a resource’s existing representation(s).

An origin server indicates response semantics by choosing an
appropriate status code depending on the result of processing the
POST request; almost all of the status codes defined by this
specification might be received in a response to POST (the exceptions
being 206 (Partial Content), 304 (Not Modified), and 416 (Range Not
Satisfiable)).

If one or more resources has been created on the origin server as a
result of successfully processing a POST request, the origin server
SHOULD send a 201 (Created) response containing a Location header
field that provides an identifier for the primary resource created
(Section 7.1.2) and a representation that describes the status of the
request while referring to the new resource(s).

Responses to POST requests are only cacheable when they include
explicit freshness information (see Section 4.2.1 of [RFC7234]).
However, POST caching is not widely implemented. For cases where an
origin server wishes the client to be able to cache the result of a

POST in a way that can be reused by a later GET, the origin server

MAY send a 200 (OK) response containing the result and a
Content-Location header field that has the same value as the POST'’s
effective request URI (Section 3.1.4.2).

If the result of processing a POST would be equivalent to a
representation of an existing resource, an origin server MAY redirect
the user agent to that resource by sending a 303 (See Other) response
with the existing resource’s identifier in the Location field. This

has the benefits of providing the user agent a resource identifier

and transferring the representation via a method more amenable to
shared caching, though at the cost of an extra request if the user
agent does not already have the representation cached.

4.3.4. PUT

The PUT method requests that the state of the target resource be
created or replaced with the state defined by the representation
enclosed in the request message payload. A successful PUT of a given
representation would suggest that a subsequent GET on that same
target resource will result in an equivalent representation being

sent in a 200 (OK) response. However, there is no guarantee that

Fielding & Reschke Standards Track [Page 26]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

such a state change will be observable, since the target resource
might be acted upon by other user agents in parallel, or might be
subject to dynamic processing by the origin server, before any
subsequent GET is received. A successful response only implies that
the user agent’s intent was achieved at the time of its processing by
the origin server.

If the target resource does not have a current representation and the
PUT successfully creates one, then the origin server MUST inform the
user agent by sending a 201 (Created) response. If the target
resource does have a current representation and that representation
is successfully modified in accordance with the state of the enclosed
representation, then the origin server MUST send either a 200 (OK) or
a 204 (No Content) response to indicate successful completion of the
request.

An origin server SHOULD ignore unrecognized header fields received in
a PUT request (i.e., do not save them as part of the resource state).

An origin server SHOULD verify that the PUT representation is
consistent with any constraints the server has for the target

resource that cannot or will not be changed by the PUT. This is
particularly important when the origin server uses internal
configuration information related to the URI in order to set the

values for representation metadata on GET responses. When a PUT
representation is inconsistent with the target resource, the origin
server SHOULD either make them consistent, by transforming the
representation or changing the resource configuration, or respond
with an appropriate error message containing sufficient information

to explain why the representation is unsuitable. The 409 (Conflict)

or 415 (Unsupported Media Type) status codes are suggested, with the
latter being specific to constraints on Content-Type values.

For example, if the target resource is configured to always have a
Content-Type of "text/html" and the representation being PUT has a
Content-Type of "image/jpeg", the origin server ought to do one of:

a. reconfigure the target resource to reflect the new media type;

b. transform the PUT representation to a format consistent with that
of the resource before saving it as the new resource state; or,

c. reject the request with a 415 (Unsupported Media Type) response
indicating that the target resource is limited to "text/html",
perhaps including a link to a different resource that would be a
suitable target for the new representation.

Fielding & Reschke Standards Track [Page 27]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

HTTP does not define exactly how a PUT method affects the state of an
origin server beyond what can be expressed by the intent of the user
agent request and the semantics of the origin server response. It

does not define what a resource might be, in any sense of that word,
beyond the interface provided via HTTP. It does not define how
resource state is "stored", nor how such storage might change as a
result of a change in resource state, nor how the origin server
translates resource state into representations. Generally speaking,

all implementation details behind the resource interface are
intentionally hidden by the server.

An origin server MUST NOT send a validator header field

(Section 7.2), such as an ETag or Last-Modified field, in a

successful response to PUT unless the request’s representation data
was saved without any transformation applied to the body (i.e., the
resource’s new representation data is identical to the representation
data received in the PUT request) and the validator field value
reflects the new representation. This requirement allows a user
agent to know when the representation body it has in memory remains
current as a result of the PUT, thus not in need of being retrieved
again from the origin server, and that the new validator(s) received

in the response can be used for future conditional requests in order
to prevent accidental overwrites (Section 5.2).

The fundamental difference between the POST and PUT methods is
highlighted by the different intent for the enclosed representation.
The target resource in a POST request is intended to handle the
enclosed representation according to the resource’s own semantics,
whereas the enclosed representation in a PUT request is defined as
replacing the state of the target resource. Hence, the intent of PUT
is idempotent and visible to intermediaries, even though the exact
effect is only known by the origin server.

Proper interpretation of a PUT request presumes that the user agent

knows which target resource is desired. A service that selects a

proper URI on behalf of the client, after receiving a state-changing

request, SHOULD be implemented using the POST method rather than PUT.
If the origin server will not make the requested PUT state change to

the target resource and instead wishes to have it applied to a

different resource, such as when the resource has been moved to a

different URI, then the origin server MUST send an appropriate 3xx
(Redirection) response; the user agent MAY then make its own decision
regarding whether or not to redirect the request.

A PUT request applied to the target resource can have side effects on
other resources. For example, an article might have a URI for
identifying "the current version” (a resource) that is separate from

the URIs identifying each particular version (different resources

Fielding & Reschke Standards Track [Page 28]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

that at one point shared the same state as the current version
resource). A successful PUT request on "the current version" URI
might therefore create a new version resource in addition to changing
the state of the target resource, and might also cause links to be
added between the related resources.

An origin server that allows PUT on a given target resource MUST send
a 400 (Bad Request) response to a PUT request that contains a
Content-Range header field (Section 4.2 of [RFC7233]), since the
payload is likely to be partial content that has been mistakenly PUT

as a full representation. Partial content updates are possible by
targeting a separately identified resource with state that overlaps a
portion of the larger resource, or by using a different method that

has been specifically defined for partial updates (for example, the
PATCH method defined in [RFC5789]).

Responses to the PUT method are not cacheable. If a successful PUT
request passes through a cache that has one or more stored responses
for the effective request URI, those stored responses will be

invalidated (see Section 4.4 of [RFC7234])).

4.3.5. DELETE

The DELETE method requests that the origin server remove the
association between the target resource and its current

functionality. In effect, this method is similar to the rm command

in UNIX: it expresses a deletion operation on the URI mapping of the
origin server rather than an expectation that the previously
associated information be deleted.

If the target resource has one or more current representations, they
might or might not be destroyed by the origin server, and the
associated storage might or might not be reclaimed, depending
entirely on the nature of the resource and its implementation by the
origin server (which are beyond the scope of this specification).
Likewise, other implementation aspects of a resource might need to be
deactivated or archived as a result of a DELETE, such as database or
gateway connections. In general, it is assumed that the origin

server will only allow DELETE on resources for which it has a
prescribed mechanism for accomplishing the deletion.

Relatively few resources allow the DELETE method -- its primary use
is for remote authoring environments, where the user has some
direction regarding its effect. For example, a resource that was
previously created using a PUT request, or identified via the

Location header field after a 201 (Created) response to a POST
request, might allow a corresponding DELETE request to undo those
actions. Similarly, custom user agent implementations that implement

Fielding & Reschke Standards Track [Page 29]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

an authoring function, such as revision control clients using HTTP

for remote operations, might use DELETE based on an assumption that
the server’'s URI space has been crafted to correspond to a version
repository.

If a DELETE method is successfully applied, the origin server SHOULD
send a 202 (Accepted) status code if the action will likely succeed

but has not yet been enacted, a 204 (No Content) status code if the
action has been enacted and no further information is to be supplied,
or a 200 (OK) status code if the action has been enacted and the
response message includes a representation describing the status.

A payload within a DELETE request message has no defined semantics;
sending a payload body on a DELETE request might cause some existing
implementations to reject the request.

Responses to the DELETE method are not cacheable. If a DELETE
request passes through a cache that has one or more stored responses
for the effective request URI, those stored responses will be

invalidated (see Section 4.4 of [RFC7234])).

4.3.6. CONNECT

The CONNECT method requests that the recipient establish a tunnel to
the destination origin server identified by the request-target and,

if successful, thereafter restrict its behavior to blind forwarding

of packets, in both directions, until the tunnel is closed. Tunnels

are commonly used to create an end-to-end virtual connection, through
one or more proxies, which can then be secured using TLS (Transport
Layer Security, [RFC5246]).

CONNECT is intended only for use in requests to a proxy. An origin
server that receives a CONNECT request for itself MAY respond with a
2xx (Successful) status code to indicate that a connection is

established. However, most origin servers do not implement CONNECT.

A client sending a CONNECT request MUST send the authority form of
request-target (Section 5.3 of [RFC7230]); i.e., the request-target
consists of only the host name and port number of the tunnel
destination, separated by a colon. For example,

CONNECT server.example.com:80 HTTP/1.1
Host: server.example.com:80

The recipient proxy can establish a tunnel either by directly

connecting to the request-target or, if configured to use another

proxy, by forwarding the CONNECT request to the next inbound proxy.
Any 2xx (Successful) response indicates that the sender (and all

Fielding & Reschke Standards Track [Page 30]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

inbound proxies) will switch to tunnel mode immediately after the
blank line that concludes the successful response’s header section;
data received after that blank line is from the server identified by
the request-target. Any response other than a successful response
indicates that the tunnel has not yet been formed and that the
connection remains governed by HTTP.

A tunnel is closed when a tunnel intermediary detects that either

side has closed its connection: the intermediary MUST attempt to send
any outstanding data that came from the closed side to the other

side, close both connections, and then discard any remaining data

left undelivered.

Proxy authentication might be used to establish the authority to
create a tunnel. For example,

CONNECT server.example.com:80 HTTP/1.1
Host: server.example.com:80
Proxy-Authorization: basic aGVsbhG86d29ybGQ=

There are significant risks in establishing a tunnel to arbitrary

servers, particularly when the destination is a well-known or

reserved TCP port that is not intended for Web traffic. For example,

a CONNECT to a request-target of "example.com:25" would suggest that
the proxy connect to the reserved port for SMTP traffic; if allowed,

that could trick the proxy into relaying spam email. Proxies that

support CONNECT SHOULD restrict its use to a limited set of known
ports or a configurable whitelist of safe request targets.

A server MUST NOT send any Transfer-Encoding or Content-Length header
fields in a 2xx (Successful) response to CONNECT. A client MUST

ignore any Content-Length or Transfer-Encoding header fields received

in a successful response to CONNECT.

A payload within a CONNECT request message has no defined semantics;
sending a payload body on a CONNECT request might cause some existing
implementations to reject the request.

Responses to the CONNECT method are not cacheable.
4.3.7. OPTIONS

The OPTIONS method requests information about the communication
options available for the target resource, at either the origin

server or an intervening intermediary. This method allows a client

to determine the options and/or requirements associated with a
resource, or the capabilities of a server, without implying a

resource action.

Fielding & Reschke Standards Track [Page 31]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

An OPTIONS request with an asterisk ("*") as the request-target
(Section 5.3 of [RFC7230]) applies to the server in general rather
than to a specific resource. Since a server’'s communication options
typically depend on the resource, the "*" request is only useful as a
"ping" or "no-op" type of method; it does nothing beyond allowing the
client to test the capabilities of the server. For example, this can

be used to test a proxy for HTTP/1.1 conformance (or lack thereof).

If the request-target is not an asterisk, the OPTIONS request applies
to the options that are available when communicating with the target
resource.

A server generating a successful response to OPTIONS SHOULD send any
header fields that might indicate optional features implemented by

the server and applicable to the target resource (e.g., Allow),

including potential extensions not defined by this specification.

The response payload, if any, might also describe the communication
options in a machine or human-readable representation. A standard

format for such a representation is not defined by this

specification, but might be defined by future extensions to HTTP. A

server MUST generate a Content-Length field with a value of "0" if no
payload body is to be sent in the response.

A client MAY send a Max-Forwards header field in an OPTIONS request
to target a specific recipient in the request chain (see

Section 5.1.2). A proxy MUST NOT generate a Max-Forwards header
field while forwarding a request unless that request was received

with a Max-Forwards field.

A client that generates an OPTIONS request containing a payload body
MUST send a valid Content-Type header field describing the
representation media type. Although this specification does not

define any use for such a payload, future extensions to HTTP might
use the OPTIONS body to make more detailed queries about the target
resource.

Responses to the OPTIONS method are not cacheable.
4.3.8. TRACE

The TRACE method requests a remote, application-level loop-back of
the request message. The final recipient of the request SHOULD
reflect the message received, excluding some fields described below,
back to the client as the message body of a 200 (OK) response with a
Content-Type of "message/http" (Section 8.3.1 of [RFC7230]). The
final recipient is either the origin server or the first server to

receive a Max-Forwards value of zero (0) in the request

(Section 5.1.2).

Fielding & Reschke Standards Track [Page 32]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

A client MUST NOT generate header fields in a TRACE request
containing sensitive data that might be disclosed by the response.

For example, it would be foolish for a user agent to send stored user
credentials [RFC7235] or cookies [RFC6265] in a TRACE request. The
final recipient of the request SHOULD exclude any request header
fields that are likely to contain sensitive data when that recipient
generates the response body.

TRACE allows the client to see what is being received at the other
end of the request chain and use that data for testing or diagnostic
information. The value of the Via header field (Section 5.7.1 of
[RFC7230]) is of particular interest, since it acts as a trace of the
request chain. Use of the Max-Forwards header field allows the
client to limit the length of the request chain, which is useful for
testing a chain of proxies forwarding messages in an infinite loop.

A client MUST NOT send a message body in a TRACE request.
Responses to the TRACE method are not cacheable.
5. Request Header Fields

A client sends request header fields to provide more information
about the request context, make the request conditional based on the
target resource state, suggest preferred formats for the response,
supply authentication credentials, or modify the expected request
processing. These fields act as request modifiers, similar to the
parameters on a programming language method invocation.

5.1. Controls

Controls are request header fields that direct specific handling of
the request.

+ + +

| Header Field Name | Defined in... |

+ + +

| Cache-Control | Section 5.2 of [RFC7234] |
| Expect | Section 5.1.1

| Host | Section 5.4 of [RFC7230] |

| Max-Forwards | Section 5.1.2

| Pragma | Section 5.4 of [RFC7234] |

| Range | Section 3.1 of [RFC7233] |

| TE | Section 4.3 of [RFC7230] |

+ + +

Fielding & Reschke Standards Track [Page 33]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

5.1.1. Expect

The "Expect" header field in a request indicates a certain set of
behaviors (expectations) that need to be supported by the server in
order to properly handle this request. The only such expectation
defined by this specification is 100-continue.

Expect ="100-continue"
The Expect field-value is case-insensitive.

A server that receives an Expect field-value other than 100-continue
MAY respond with a 417 (Expectation Failed) status code to indicate
that the unexpected expectation cannot be met.

A 100-continue expectation informs recipients that the client is

about to send a (presumably large) message body in this request and
wishes to receive a 100 (Continue) interim response if the
request-line and header fields are not sufficient to cause an
immediate success, redirect, or error response. This allows the

client to wait for an indication that it is worthwhile to send the
message body before actually doing so, which can improve efficiency
when the message body is huge or when the client anticipates that an
error is likely (e.g., when sending a state-changing method, for the
first time, without previously verified authentication credentials).

For example, a request that begins with

PUT /somewhere/fun HTTP/1.1
Host: origin.example.com
Content-Type: video/h264
Content-Length: 1234567890987
Expect: 100-continue

allows the origin server to immediately respond with an error
message, such as 401 (Unauthorized) or 405 (Method Not Allowed),
before the client starts filling the pipes with an unnecessary data
transfer.

Requirements for clients:

o Aclient MUST NOT generate a 100-continue expectation in a request
that does not include a message body.

0 A client that will wait for a 100 (Continue) response before

sending the request message body MUST send an Expect header field
containing a 100-continue expectation.

Fielding & Reschke Standards Track [Page 34]

RFC 7231 HTTP/1.1 Semantics and Content June 2014

o A client that sends a 100-continue expectation is not required to
wait for any specific length of time; such a client MAY proceed to
send the message body even if it has not yet received a response.
Furthermore, since 100 (Continue) responses cannot be sent through
an HTTP/1.0 intermediary, such a client SHOULD NOT wait for an
indefinite period before sending the message body.

0 A client that receives a 417 (Expectation Failed) status code in
response to a request containing a 100-continue expectation SHOULD
repeat that request without a 100-continue expectation, since the
417 response merely indicates that the response chain does not
support expectations (e.g., it passes through an HTTP/1.0 server).

Requirements for servers:

0 A server that receives a 100-continue expectation in an HTTP/1.0
request MUST ignore that expectation.

o A server MAY omit sending a 100 (Continue) response if it has
already received some or all of the message body for the
corresponding request, or if the framing indicates that there is
no message body.

0 A server that sends a 100 (Continue) response MUST ultimately send
a final status code, once the message body is received and
processed, unless the connection is closed prematurely.

0 A server that responds with a final status code before reading the
entire message body SHOULD indicate in that response whether it
