Net wor k Wor ki ng Group B. Cal | aghan

Request for Comments: 1813 B. Pawl owski
Cat egory: | nformational P. Staubach
Sun M crosystens, |nc.

June 1995

NFS Version 3 Protocol Specification

Status of this Meno
This neno provides information for the Internet conmunity.
This meno does not specify an Internet standard of any kind.
Distribution of this neno is unlimted.

| ESG Not e
I nternet Engineering Steering Group comment: please note that
the ETF is not involved in creating or naintaining this
specification. This is the significance of the specification
not being on the standards track

Abstr act

Thi s paper describes the NFS version 3 protocol. This paper is
provi ded so that people can wite conpatible inplenmentations.

Tabl e of Contents

1. I ntroduction . . 3
1.1 Scope of the NFS ver sion 3 protocol 4
1.2 Useful terns . 5
1.3 Renot e Procedure CaII . 5
1.4 External Data Representation . . 5
1.5 Aut henti cati on and Perm ssion Checklng . 7
1.6 Phi | osophy . . . 8
1.7 Changes fron1the NFS ver sion 2 protocol 11
2. RPC | nformati on 14
2.1 Aut henti cation . 14
2.2 Const ant s 14
2.3 Transport address 14
2.4 Sizes . . . 14
2.5 Basi ¢ Data Types . 15
2.6 Defined Error Nunbers 17
3. Server Procedures . 27
3.1 General comments on attrlbutes . 29
3.2 General comments on filenanes 30
3.3.0 NULL: Do nothing 3

Cal | aghan, el al I nf or mat i onal [Page 1]

RFC 1813 NFS Versi on 3 Protocol June 1995

3.3.1 GETATTR Cet file attributes 32
3.3.2 SETATTR. Set file attributes 33
3.3.3 LOOKUP: Lookup filenane . . s Y 4
3.3.4 ACCESS: Check access pernlsS|on - (0]
3.3.5 READLI NK: Read from synbolic Ilink 44
3.3.6 READ: Read fromfile 46
3.3.7 WRI TE: Wite to file 49
3.3.8 CREATE: Create a file b4
3.3.9 MKDI R Create a directory . . . e 58
3.3.10 SYM.INK: Create a synbolic I|nk T o ¥
3.3.11 MKNOD: Create a special device 63
3.3.12 REMOVE: Renove a file 67
3.3.13 RMDIR Renpbve a directory . . e o 1¢)
3.3.14 RENAME: Renane a file or dlrectory e 4 1
3.3.15 LINK Create link to an object 74
3.3.16 READDIR Read Fromdirectory 716
3.3.17 READDI RPLUS: Extended read fron1d|rectory 80
3.3.18 FSSTAT: Get dynamic file systeminformation 84
3.3.19 FSINFO Cet static file systeminformation 86
3.3.20 PATHCONF: Retrieve POSI X information . . . 90
3.3.21 COMT: Commit cached data on a server to stable storage 92
4. | mpl enentation issues 96
4.1 Multiple version support 96
4.2 Server/client relationship 96
4.3 Path name interpretation 97
4.4 Permissionissues 98
4.5 Duplicate request cache 99
4.6 Fil e name conponent handling 101
4.7 Synchronous nodi fyi ng operations 101
4.8 Stabl e storage . . e Ko X
4.9 Lookups and name resolutlon e K 0 4
4.10 Adaptive retransmission 102
4.11 Caching policies . . X 0 4
4.12 Stabl e versus unstable MW|tes - 103
4.13 32 bit clients/servers and 64 bit cllents/servers. . . . 104
5. Appendi x |: Mount protocol 106
5.1 RPC I nformation . 106
5.1.1 Aut hentication . 106
5.1.2 Constants . . e K 0] §)
5.1.3 Transport address e 1 0]
5.1.4 Sizes . . e e e e e 106
515 Basi c Data Types . K 0)
5.2 Server Procedures lo7
5.2.0 NULL: Do nothing 108
5.2.1 MNT: Add nount entry 109
5.2.2 DUWP: Return nount entries 110
5.2.3 UWT: Renpove nount entry . . . B e
5.2.4 UWNTALL: Rernove all nount entrles i 7

Cal | aghan, el al I nf or mat i onal [Page 2]

RFC 1813 NFS Versi on 3 Protocol June 1995

5.2.5 EXPORT: Return export list 113
6. Appendi x I'l: Lock manager protocol 114
6.1 RPC I nformation . 114
6.1.1 Aut hentication . 114
6.1.2 Constants .. 114
6.1.3 Transport Address 115
6.1.4 Basic Data Types 115
6.2 NLM Procedures . 118
6.2.0 NULL: Do nothing 120
6.3 | mpl enentation issues 120
6.3.1 64-bit offsets and lengths 120
6.3.2 File handles . 120
7. Appendix Ill: Bibliography 122
8. Security Considerations 125
9. Acknowl edgenents . 125
10. Authors’ Addresses . 126

1. Introduction

Sun’s NFS protocol provides transparent renote access to shared
file systems across networks. The NFS protocol is designhed to be
machi ne, operating system network architecture, and transport
prot ocol independent. This independence is achi eved through the
use of Renpte Procedure Call (RPC) primtives built on top of an
exXternal Data Representation (XDR). |nplenmentations of the NFS
version 2 protocol exist for a variety of nmachines, from persona
conmputers to superconputers. The initial version of the NFS
protocol is specified in the Network File System Protoco

Speci fication [RFC1094]. A description of the initial

i npl enentation can be found in [Sandberg].

The supporting MOUNT protocol perforns the operating

system specific functions that allow clients to attach renote
directory trees to a point within the local file system The
mount process also allows the server to grant renote access
privileges to a restricted set of clients via export control

The Lock Manager provides support for file | ocking when used in
the NFS environnment. The Network Lock Manager (NLM protoco

i solates the inherently stateful aspects of file locking into a
separ at e protocol

A conpl ete description of the above protocols and their
i mpl ementation is to be found in [X OpenNFS].

The purpose of this docunent is to:

Cal | aghan, el al I nf or mat i onal [Page 3]

RFC 1813 NFS Versi on 3 Protocol June 1995

0 Specify the NFS version 3 protocol

0 Describe semantics of the protocol through annotation
and description of intended inplenentation.

0 Specify the MOUNT version 3 protocol

o Briefly describe the changes between the NLM version 3
protocol and the NLM version 4 protocol

The normative text is the description of the RPC procedures and
argunents and results, which defines the over-the-wre protocol
and the semantics of those procedures. The naterial describing

i mpl ement ation practice aids the understanding of the protoco
speci fication and descri bes sone possible inplenentation issues
and solutions. It is not possible to describe all inplenmentations
and the UNI X operating systeminplenentation of the NFS version 3
protocol is nost often used to provide exanples. Gven that, the
i mpl enent ati on di scussi on does not bear the authority of the
description of the over-the-wire protocol itself.

1.1 Scope of the NFS version 3 protoco

This revision of the NFS protocol addresses new requirenents.
The need to support larger files and file systens has pronpted
extensions to allow 64 bit file sizes and offsets. The revision
enhances security by adding support for an access check to be
done on the server. Performance nodifications are of three

types:

1. The nunber of over-the-wire packets for a given
set of file operations is reduced by returning file
attributes on every operation, thus decreasing the nunber
of calls to get nodified attributes.

2. The write throughput bottl eneck caused by the synchronous
definition of wite in the NFS version 2 protocol has been
addressed by addi ng support so that the NFS server can do
unsafe wites. Unsafe wites are wites which have not
been conmitted to stable storage before the operation
returns. This specification defines a nmethod for
conmitting these unsafe wites to stable storage in a
reliable way.

3. Limtations on transfer sizes have been rel axed.

The ability to support nultiple versions of a protocol in RPC
will allowinplenentors of the NFS version 3 protocol to define

Cal | aghan, el al I nf or mat i onal [Page 4]

RFC 1813 NFS Versi on 3 Protocol June 1995

clients and servers that provide backwards conpatibility with
the existing installed base of NFS version 2 protocol
i mpl emrent ati ons.

The extensions described here represent an evolution of the
exi sting NFS protocol and nost of the design features of the
NFS protocol described in [Sandberg] persist. See Changes
fromthe NFS version 2 protocol on page 11 for a nore
detail ed sumary of the changes introduced by this revision

1.2 Useful terns

In this specification, a "server" is a nmachine that provides

resources to the network; a "client” is a machine that accesses
resources over the network; a "user"” is a person logged in on a
client; an "application" is a programthat executes on a client.

1.3 Renpte Procedure Call

The Sun Renote Procedure Call specification provides a
procedure-oriented interface to renote services. Each server
supplies a program which is a set of procedures. The NFS
service is one such program The conbi nati on of host address,
program nunber, version nunber, and procedure nunber specify one
renote service procedure. Servers can support nultiple versions
of a program by using different protocol version nunbers.

The NFS protocol was designed to not require any specific | eve
of reliability fromits lower levels so it could potentially be
used on many underlying transport protocols. The NFS service is
based on RPC which provides the abstracti on above | ower |eve
network and transport protocols.

The rest of this docunent assunmes the NFS environnent is
i npl emented on top of Sun RPC, which is specified in [RFCL057].
A conpl ete discussion is found in [Corbin].

1.4 External Data Representation

The eXternal Data Representation (XDR) specification provides a
standard way of representing a set of data types on a network.
This solves the problemof different byte orders, structure

al i gnnment, and data type representation on different,

conmuni cati ng nmachi nes.

In this docunent, the RPC Data Description Language is used to

specify the XDR format paraneters and results to each of the RPC
service procedures that an NFS server provides. The RPC Data

Cal | aghan, el al I nf or mat i onal [Page 5]

RFC 1813 NFS Versi on 3 Protocol June 1995

Description Language is simlar to declarations in the C
programi ng | anguage. A few new constructs have been added.
The not ati on:

string nanme[S| ZE];
string data<DSI ZE>;

defines name, which is a fixed size block of SIZE bytes, and
data, which is a variable sized block of up to DSIZE bytes. This
notation indicates fixed-length arrays and arrays with a

vari abl e nunber of elenments up to a fixed maxi mum A

vari able-1ength definition with no size specified neans there is
no maxi num si ze for the field.

The di scrim nated union definition:

uni on exanple switch (enum status) {

case X
struct {
fil enanme filel;
fil enanme file2;
i nteger count ;
}
case ERROR
struct {
errstat error,
i nteger errno;
defaul t:
voi d;

}

defines a structure where the first thing over the network is an
enurmeration type called status. If the value of status is K
the next thing on the network will be the structure containing
filel, file2, and count. Else, if the value of status is ERROR
the next thing on the network will be a structure containing
error and errno. |If the value of status is neither OK nor

ERRCOR, then there is no nore data in the structure.

The XDR type, hyper, is an 8 byte (64 bit) quantity. It is used
in the same way as the integer type. For exanpl e:

hyper foo;
unsi gned hyper bar

foo is an 8 byte signed value, while bar is an 8 byte unsigned
val ue.

Cal | aghan, el al I nf or mat i onal [Page 6]

RFC 1813 NFS Versi on 3 Protocol June 1995

Al t hough RPC/ XDR conpilers exist to generate client and server
stubs from RPC Data Description Language input, NFS

i mpl enmentations do not require their use. Any software that

provi des equi val ent encodi ng and decoding to the canonica
networ k order of data defined by XDR can be used to interoperate
wi th other NFS inpl enentations.

XDR is described in [RFC1014].
1.5 Authentication and Perni ssion Checking

The RPC protocol includes a slot for authentication paraneters
on every call. The contents of the authentication paraneters are
determi ned by the type of authentication used by the server and
client. A server may support several different flavors of

aut henti cation at once. The AUTH NONE fl avor provides nul

aut hentication, that is, no authentication information is
passed. The AUTH UNI X fl avor provides UN X-style user ID, group
I D, and groups with each call. The AUTH DES fl avor provides
DES- encrypt ed aut hentication paraneters based on a network-w de
nane, with session keys exchanged via a public key schenme. The
AUTH KERB fl avor provi des DES encrypted authentication
paraneters based on a network-w de name with session keys
exchanged vi a Kerberos secret keys.

The NFS server checks pernissions by taking the credentials from
the RPC aut hentication information in each renote request. For
exanpl e, using the AUTH UNI X fl avor of authentication, the
server gets the user’s effective user ID, effective group ID and
groups on each call, and uses themto check access. Using user
ids and group ids inplies that the client and server either
share the same ID list or do |ocal user and group |ID napping.
Servers and clients nust agree on the mapping fromuser to uid
and fromgroup to gid, for those sites that do not inplenent a
consi stent user ID and group I D space. In practice, such mapping
is typically perforned on the server, following a static napping
schene or a napping established by the user froma client at
nount ti ne.

The AUTH DES and AUTH KERB styl e of authentication is based on a
net wor k-wi de nane. It provides greater security through the use
of DES encryption and public keys in the case of AUTH DES, and
DES encryption and Kerberos secret keys (and tickets) in the
AUTH _KERB case. Again, the server and client nust agree on the
identity of a particular nane on the network, but the nane to
identity mapping is nore operating system i ndependent than the
uid and gid mapping in AUTH UNl X. Al so, because the

aut hentication paraneters are encrypted, a nalicious user nust

Cal | aghan, el al I nf or mat i onal [Page 7]

RFC 1813 NFS Versi on 3 Protocol June 1995

know anot her users network password or private key to nmasquerade
as that user. Similarly, the server returns a verifier that is
al so encrypted so that masqueradi ng as a server requires know ng
a networ k password.

The NULL procedure typically requires no authentication
1.6 Phil osophy

This specification defines the NFS version 3 protocol, that is
the over-the-wire protocol by which a client accesses a server
The protocol provides a well-defined interface to a server’s
file resources. A client or server inplenents the protocol and
provi des a mapping of the local file system senantics and
actions into those defined in the NFS version 3 protocol

I mpl enentations may differ to varying degrees, depending on the
extent to which a given environment can support all the
operations and senantics defined in the NFS version 3 protocol
Al t hough i npl enentations exist and are used to illustrate
various aspects of the NFS version 3 protocol, the protoco
specification itself is the final description of how clients
access server resources.

Because the NFS version 3 protocol is designed to be

operati ng-system i ndependent, it does not necessarily match the
semantics of any existing system Server inplenentations are
expected to nake a best effort at supporting the protocol. If a
server cannot support a particular protocol procedure, it may
return the error, NFS3ERR NOTSUP, that indicates that the
operation is not supported. For exanple, nany operating systens
do not support the notion of a hard link. A server that cannot
support hard links should return NFS3ERR NOTSUP in response to a
LI NK request. FSINFO describes the nost conmonly unsupported
procedures in the properties bit nmap. Alternatively, a server
may not natively support a given operation, but can enulate it
in the NFS version 3 protocol inplenentation to provide greater
functionality.

In sone cases, a server can support nost of the semantics
descri bed by the protocol but not all. For exanple, the ctine
field in the fattr structure gives the tinme that a file's
attributes were last nodified. Many systens do not keep this
information. In this case, rather than not support the GETATTR
operation, a server could sinulate it by returning the |ast
nmodified tinme in place of ctime. Servers must be careful when
simulating attribute information because of possible side
effects on clients. For exanple, many clients use file

nodi fication tines as a basis for their cache consistency

Cal | aghan, el al I nf or mat i onal [Page 8]

RFC 1813 NFS Versi on 3 Protocol June 1995

schene.

NFS servers are dunb and NFS clients are smart. It is the
clients that do the work required to convert the generalized
file access that servers provide into a file access nethod that
is useful to applications and users. In the LINK exanple given
above, a UNIX client that received an NFS3ERR NOTSUP error from
a server would do the recovery necessary to either nake it | ook
to the application like the link request had succeeded or return
a reasonable error. In general, it is the burden of the client
to recover.

The NFS version 3 protocol assunmes a statel ess server

i mpl ementation. Statel essness neans that the server does not
need to maintain state about any of its clients in order to
function correctly. Statel ess servers have a distinct advantage
over stateful servers in the event of a crash. Wth statel ess
servers, a client need only retry a request until the server
responds; the client does not even need to know that the server
has crashed. See additional coments in Duplicate request cache
on page 99.

For a server to be useful, it holds nonvolatile state: data
stored in the file system Design assunptions in the NFS version
3 protocol regarding flushing of nodified data to stable storage
reduce the nunber of failure nodes in which data | oss can occur
In this way, NFS version 3 protocol inplenmentations can tolerate
transient failures, including transient failures of the network
In general, server inplenentations of the NFS version 3 protoco
cannot tolerate a non-transient failure of the stable storage
itself. However, there exist fault tolerant inplenentations

whi ch attenpt to address such probl ens.

That is not to say that an NFS version 3 protocol server can’t
mai ntain noncritical state. In many cases, servers will maintain
state (cache) about previous operations to increase performance.
For exanple, a client READ request night trigger a read-ahead of
the next block of the file into the server’s data cache in the
anticipation that the client is doing a sequential read and the
next client READ request will be satisfied fromthe server’s
data cache instead of fromthe di sk. Read-ahead on the server

i ncreases performance by overl apping server disk I/Owth client
requests. The inportant point here is that the read-ahead bl ock
is not necessary for correct server behavior. If the server
crashes and loses its nenory cache of read buffers, recovery is
sinmple on reboot - clients will continue read operations
retrieving data fromthe server disk

Cal | aghan, el al I nf or mat i onal [Page 9]

RFC 1813 NFS Versi on 3 Protocol June 1995

Most dat a- nodi fyi ng operations in the NFS protocol are
synchronous. That is, when a data nodifying procedure returns
to the client, the client can assunme that the operation has
conpl eted and any nodified data associated with the request is
now on stable storage. For exanple, a synchronous client WRITE
request may cause the server to update data bl ocks, file system
i nformation blocks, and file attribute information - the latter
information is usually referred to as netadata. When the WRI TE
operation conpletes, the client can assune that the wite data
is safe and discard it. This is a very inportant part of the
statel ess nature of the server. If the server did not flush
dirty data to stable storage before returning to the client, the
client would have no way of knowi ng when it was safe to discard
nmodi fi ed data. The follow ng data nodi fying procedures are
synchronous: WRITE (with stable flag set to FILE_SYNC), CREATE,
MKDI R, SYMLI NK, MKNOD, REMOVE, RMDI R, RENAME, LINK, and COWM T.

The NFS version 3 protocol introduces safe asynchronous wites
on the server, when the WRITE procedure is used in conjunction
with the COWM T procedure. The COWM T procedure provi des a way
for the client to flush data from previous asynchronous WR TE
requests on the server to stable storage and to detect whether
it is necessary to retransnmt the data. See the procedure
descriptions of WRITE on page 49 and COWM T on page 92.

The LOOKUP procedure is used by the client to traverse

mul ti conponent file names (pathnanes). Each call to LOOKUP is
used to resol ve one segnent of a pathname. There are two reasons
for restricting LOOKUP to a single segnent: it is hard to
standardi ze a conmon format for hierarchical file names and the
client and server may have different mappi ngs of pathnanes to
file systenms. This would inply that either the client nust break
the path nane at file system attachnent points, or the server
must know about the client’s file system attachnment points. In
NFS version 3 protocol inplenentations, it is the client that
constructs the hierarchical file nane space using nounts to
build a hierarchy. Support utilities, such as the Autonounter
provide a way to manage a shared, consistent inage of the file
nane space while still being driven by the client nount

process.

Cients can performcaching in varied nanner. The genera
practice with the NFS version 2 protocol was to inplenent a

ti me-based client-server cache consistency nmechanism It is
expected NFS version 3 protocol inplenentations will use a
sim | ar mechani sm The NFS version 3 protocol has some explicit
support, in the formof additional attribute information to
elimnate explicit attribute checks. However, caching is not

Cal | aghan, el al I nf or mat i onal [Page 10]

RFC 1813 NFS Versi on 3 Protocol June 1995

required, nor is any caching policy defined by the protocol
Nei t her the NFS version 2 protocol nor the NFS version 3
protocol provide a nmeans of nmintaining strict client-server
consi stency (and, by inplication, consistency across client
caches).

1.7 Changes fromthe NFS Version 2 Protoco

The ROOT and WRI TECACHE procedures have been renoved. A MKNOD
procedure has been defined to allow the creation of specia
files, elimnating the overloadi ng of CREATE. Caching on the
client is not defined nor dictated by the NFS version 3
protocol, but additional information and hints have been added
to the protocol to allow clients that inplenment caching to
manage their caches nore effectively. Procedures that affect the
attributes of a file or directory may now return the new
attributes after the operation has conpleted to optimze out a
subsequent GETATTR used in validating attribute caches. In
addition, operations that nodify the directory in which the
target object resides return the old and new attributes of the
directory to allowclients to inplenent nore intelligent cache
i nval i dation procedures. The ACCESS procedure provi des access
perm ssi on checking on the server, the FSSTAT procedure returns
dynamic infornmation about a file system the FSINFO procedure
returns static information about a file systemand server, the
READDI RPLUS procedure returns file handles and attributes in
addition to directory entries, and the PATHCONF procedure
returns POSI X pat hconf information about a file.

Below is a list of the inportant changes between the NFS version
2 protocol and the NFS version 3 protocol

Fil e handl e size
The file handl e has been increased to a variable-length
array of 64 bytes maxinumfroma fixed array of 32
bytes. This addresses sone known requirenents for a
slightly larger file handle size. The file handl e was
converted fromfixed length to variable length to
reduce | ocal storage and network bandw dth requirenents
for systens which do not utilize the full 64 bytes of
| engt h.

Maxi mum dat a si zes
The maxi mum size of a data transfer used in the READ
and WRI TE procedures is now set by values in the FSINFO
return structure. In addition, preferred transfer sizes
are returned by FSINFO The protocol does not place any
artificial limts on the maxi numtransfer sizes.

Cal | aghan, el al I nf or mat i onal [Page 11]

RFC 1813 NFS Versi on 3 Protocol June 1995

Fi | enames and pat hnanes are now specified as strings of
vari able length. The actual length restrictions are
determined by the client and server inplenentations as
appropriate. The protocol does not place any
artificial limts on the Iength. The error,
NFS3ERR_NAMETOOLONG, is provided to allow the server to
return an indication to the client that it received a
pat hnane that was too long for it to handle.

Error return
Error returns in sonme instances now return data (for
exanpl e, attributes). nfsstat3 now defines the full set
of errors that can be returned by a server. No other
val ues are al |l oned.

File type
The file type now i ncl udes NF3CHR and NF3BLK for
special files. Attributes for these types include
subfields for UNI X maj or and mi nor devices nunbers.
NF3SOCK and NF3FI FO are now defined for sockets and
fifos in the file system

File attributes
The bl ocksize (the size in bytes of a block in the
file) field has been renoved. The node field no | onger
contains file type information. The size and fileid
fields have been wi dened to ei ght-byte unsigned
i ntegers fromfour-byte integers. Major and ninor
device information is now presented in a distinct
structure. The blocks field nanme has been changed to
used and now contains the total nunber of bytes used by
the file. It is also an ei ght-byte unsigned integer

Set file attributes
In the NFS version 2 protocol, the settable attributes
were represented by a subset of the file attributes
structure; the client indicated those attributes which
were not to be nodified by setting the correspondi ng
field to -1, overloading sonme unsigned fields. The set
file attributes structure now uses a discrimnated
union for each field to tell whether or how to set that
field. The atime and ntinme fields can be set to either
the server’s current tinme or a tine supplied by the
client.

L OOKUP

The LOOKUP return structure now i ncludes the attributes
for the directory searched

Cal | aghan, el al I nf or mat i onal [Page 12]

RFC 1813 NFS Versi on 3 Protocol June 1995

ACCESS
An ACCESS procedure has been added to allow an explicit
over-the-w re perm ssions check. This addresses known
problenms with the superuser |ID mapping feature in many
server inplenentations (where, due to mappi ng of root
user, unexpected perm ssion denied errors could occur
while reading fromor witing to a file). This also
renoves the assunption which was nade in the NFS
version 2 protocol that access to files was based
solely on UNI X style node bits.

READ
The reply structure includes a Boolean that is TRUE if
the end-of -file was encountered during the READ. This
allows the client to correctly detect end-of-file.

VWRI TE
The begi nof fset and total count fields were renoved from
the WRI TE argunents. The reply now includes a count so
that the server can wite |less than the requested
anount of data, if required. An indicator was added to
the argunents to instruct the server as to the |evel of
cache synchronization that is required by the client.

CREATE
An exclusive flag and a create verifier was added for
the exclusive creation of regular files.

MKNOD
This procedure was added to support the creation of
special files. This avoids overloading fields of CREATE
as was done in some NFS version 2 protocol
i mpl erent ati ons.

READDI R
The READDI R argunents now i nclude a verifier to all ow
the server to validate the cookie. The cookie is now a
64 bit unsigned integer instead of the 4 byte array
whi ch was used in the NFS version 2 protocol. This
will help to reduce interoperability problens.

READDI RPLUS
This procedure was added to return file handl es and
attributes in an extended directory list.

FSI NFO

FSI NFO was added to provide nonvol atile information
about a file system The reply includes preferred and

Cal | aghan, el al I nf or mat i onal [Page 13]

RFC 1813 NFS Versi on 3 Protocol June 1995

maxi mum read transfer size, preferred and maximumwite
transfer size, and flags stating whether |inks or
synbolic links are supported. Also returned are
preferred transfer size for READDI R procedure replies,
server tine granularity, and whether tinmes can be set
in a SETATTR request.

FSSTAT
FSSTAT was added to provide volatile infornmation about
a file system for use by utilities such as the Unix
system df conmand. The reply includes the total size
and free space in the file systemspecified in bytes,
the total nunmber of files and nunber of free file slots
inthe file system and an estinmate of time between
file systemnodifications (for use in cache consistency
checki ng al gorithns).

COW T
The COW T procedure provi des the synchronization
mechani smto be used with asynchronous WRI TE
operations.
2. RPC Information
2.1 Authentication
The NFS service uses AUTH NONE in the NULL procedure. AUTH UNI X
AUTH DES, or AUTH KERB are used for all other procedures. O her
aut hentication types nmay be supported in the future.
2.2 Constants

These are the RPC constants needed to call the NFS Version 3
service. They are given in decinal.

PROGRAM 100003
VERSION 3

2.3 Transport address
The NFS protocol is normally supported over the TCP and UDP
protocols. It uses port 2049, the sane as the NFS version 2
pr ot ocol

2.4 Sizes

These are the sizes, given in deciml bytes, of various XDR
structures used in the NFS version 3 protocol

Cal | aghan, el al I nf or mat i onal [Page 14]

RFC 1813 NFS Version 3 Protoco

NFS3_FHSI ZE 64
The maxi mum size in bytes of the opaque file handle.

NFS3_COCKI EVERFSI ZE 8
The size in bytes of the opaque cookie verifier passed by
READDI R and READDI RPLUS

NFS3_CREATEVERFSI ZE 8
The size in bytes of the opaque verifier used for
excl usi ve CREATE

NFS3_WRI TEVERFSI ZE 8
The size in bytes of the opaque verifier used for
asynchronous WRI TE.
2.5 Basic Data Types

The following XDR definitions are basic definitions that are
used in other structures.

ui nt 64

typedef unsi gned hyper uint64;
i nt 64

typedef hyper int64;
ui nt 32

typedef unsi gned | ong uint 32;
i nt32

typedef |ong int32;
fil ename3

typedef string fil ename3<>;
nf spat h3

typedef string nfspath3<>;
fileid3

typedef uint64 fileid3
cooki e3

t ypedef ui nt64 cooki e3;

cooki everf3
typedef opaque cooki everf 3] NFS3_COCKI EVERFSI ZE] ;

Cal | aghan, el al I nf or mati ona

June

1995

[Page 15]

RFC 1813

createverf3
t ypedef

witeverf3
t ypedef

ui d3
t ypedef

gi d3
t ypedef

si ze3
t ypedef

of fset3
t ypedef

node3
t ypedef

count 3
t ypedef

nf sstat 3

opaque

opaque

nt 32

u

nt 32

u

nt 64

u

nt 64

u

nt 32

u

ui nt 32

enum nfsstat3 {

NFS3_OK

NFS3ERR_
NFS3ERR_
NFS3ERR_
NFS3ERR_
NFS3ERR _
NFS3ERR_
NFS3ERR_
NFS3ERR_
NFS3ERR_NOTDI R
NFS3ERR_
NFS3ERR _
NFS3ERR_
NFS3ERR_
NFS3ERR_
NFS3ERR_
NFS3ERR_NAVETOOLONG
NFS3ERR_NOTEMPTY

NFS3ERR_
NFS3ERR_
NFS3ERR_REMOTE

NFS3ERR_BADHANDLE

Cal | aghan, el a

PERM
NCENT
IO

NXI O
ACCES
EXI ST
XDEV
NCDEV

| SDI R
I NVAL
FBI G
NCSPC
ROFS
M1 NK

DQUOT
STALE

NFS Version 3 Protoco

creat ever f 3[NFS3__CREATEVERFSI ZE] ;

writeverf 3[NFS3_WRI TEVERFSI ZE] ;

ui d3;

gi d3;

si ze3;

of f set 3;

node3;

count 3;

L T 1 1 1 1 e 1 1 1 1 O VI A A L O 1 R
N
=

I nf or mat i ona

June 1995

[Page 16]

RFC 1813 NFS Versi on 3 Protocol June 1995

NFS3ERR_NOT_SYNC = 10002,
NFS3ERR_BAD_COOKI E = 10003,
NFS3ERR_NOTSUPP = 10004,
NFS3ERR_TOOSMALL = 10005,
NFS3ERR_SERVERFAULT = 10006,
NFS3ERR_BADTYPE = 10007,
NFS3ERR_J UKEBOX = 10008

s

The nfsstat3 type is returned with every procedure’s results
except for the NULL procedure. A value of NFS3_OK indicates that
the call conpleted successfully. Any other val ue indicates that
sonme error occurred on the call, as identified by the error
code. Note that the precise nuneric encoding nust be foll owed.
No other values nmay be returned by a server. Servers are
expected to nake a best effort mapping of error conditions to
the set of error codes defined. In addition, no error
precedences are specified by this specification. FError
precedences determne the error value that should be returned
when nore than one error applies in a given situation. The error
precedence will be deternined by the individual server

i npl enentation. If the client requires specific error
precedences, it should check for the specific errors for

itself.

2.6 Defined Error Nunbers
A description of each defined error follows:

NFS3_K
I ndicates the call conpleted successfully.

NFS3ERR_PERM
Not owner. The operation was not allowed because the
caller is either not a privileged user (root) or not the
owner of the target of the operation

NFS3ERR_NOENT
No such file or directory. The file or directory nane
speci fi ed does not exist.

NFS3ERR_I O
I/Oerror. A hard error (for exanple, a disk error)
occurred while processing the requested operation

NFS3ERR_NXI O
I/O error. No such device or address.

Cal | aghan, el al I nf or mat i onal [Page 17]

RFC 1813 NFS Versi on 3 Protocol June 1995

NFS3ERR_ACCES
Permi ssion deni ed. The caller does not have the correct
permi ssion to performthe requested operation. Contrast
this with NFS3ERR PERM which restricts itself to owner
or privileged user perm ssion failures.

NFS3ERR_EXI ST
File exists. The file specified already exists.

NFS3ERR_XDEV
Attenpt to do a cross-device hard |ink.

NFS3ERR_NODEV
No such devi ce.

NFS3ERR_NOTDI R
Not a directory. The caller specified a non-directory in
a directory operation.

NFS3ERR_| SDI R
Is a directory. The caller specified a directory in a
non-di rectory operation.

NFS3ERR_I NVAL
I nvalid argunment or unsupported argunent for an
operation. Two exanples are attenpting a READLINK on an
obj ect other than a synbolic link or attenpting to
SETATTR a tine field on a server that does not support
this operation.

NFS3ERR_FBI G
File too large. The operati on woul d have caused a file to
grow beyond the server’s limt.

NFS3ERR_NOSPC
No space |l eft on device. The operation would have caused
the server’'s file systemto exceed its linmt.

NFS3ERR_ROFS
Read-only file system A nodifying operation was
attenpted on a read-only file system

NFS3ERR_MLI NK
Too many hard |inks.

NFS3ERR_NAVMETOCOLONG
The filenanme in an operation was too |ong.

Cal | aghan, el al I nf or mat i onal [Page 18]

RFC 1813 NFS Versi on 3 Protocol June 1995

NFS3ERR_NOTEMPTY

An attenpt was nmade to renpove a directory that was not
enpty.

NFS3ERR_DQUOT
Resource (quota) hard lint exceeded. The user’s resource
limt on the server has been exceeded.

NFS3ERR_STALE
Invalid file handle. The file handle given in the
argunents was invalid. The file referred to by that file
handl e no | onger exists or access to it has been
r evoked.

NFS3ERR_REMOTE
Too many |l evels of renote in path. The file handl e given
in the argunents referred to a file on a non-local file
system on the server

NFS3ERR_BADHANDLE
Illegal NFS file handle. The file handle failed interna
consi stency checks.

NFS3ERR_NOT_SYNC
Updat e synchroni zati on m smatch was detected during a
SETATTR oper ati on.

NFS3ERR BAD COOKI E
READDI R or READDI RPLUS cookie is stale.

NFS3ERR_NOTSUPP
Qperation is not supported.

NFS3ERR_TOOSMALL
Buf fer or request is too snall

NFS3ERR_SERVERFAULT
An error occurred on the server which does not map to any
of the Iegal NFS version 3 protocol error values. The
client should translate this into an appropriate error
UNI X clients nay choose to translate this to EIO

NFS3ERR_BADTYPE

An attenpt was nade to create an object of a type not
supported by the server.

Cal | aghan, el al I nf or mat i onal [Page 19]

RFC 1813 NFS Versi on 3 Protocol June 1995

NFS3ERR_JUKEBOX
The server initiated the request, but was not able to
complete it in a tinely fashion. The client should wait
and then try the request with a new RPC transaction |D
For exanple, this error should be returned froma server
that supports hierarchical storage and receives a request
to process a file that has been nigrated. In this case,
the server should start the immgration process and
respond to client with this error

ftype3

enum ftype3 {
NF3REG
NF3DI R
NF3BLK
NF3CHR
NF3LNK
NF3SOCK
NF3FI FO

~NoUAWNE

b

The enuneration, ftype3, gives the type of a file. The type,
NF3REG is a regular file, NFBDIRis a directory, NF3BLK is a
bl ock special device file, NF3CHR is a character special device
file, NF3LNK is a symbolic link, NF3SOCK is a socket, and
NF3FI FO i s a nanmed pipe. Note that the preci se enum encodi ng
must be foll owed.

specdat a3

struct specdata3 {
ui nt 32 specdat al
ui nt 32 specdat a2;

H

The interpretation of the two words depends on the type of file
system obj ect. For a block special (NF3BLK) or character specia
(NF3CHR) file, specdatal and specdata2 are the mgjor and ni nor
devi ce nunbers, respectively. (This is obviously a

UNI X-specific interpretation.) For all other file types, these
two el ements should either be set to 0 or the val ues should be
agreed upon by the client and server. If the client and server
do not agree upon the values, the client should treat these
fields as if they are set to 0. This data field is returned as
part of the fattr3 structure and so is available from al
replies returning attributes. Since these fields are otherw se
unused for objects which are not devices, out of band

Cal | aghan, el al I nf or mat i onal [Page 20]

RFC 1813 NFS Versi on 3 Protocol June 1995

i nformati on can be passed fromthe server to the client.
However, once again, both the server and the client nust agree
on the val ues passed.

nfs_fh3

struct nfs fh3 {
opaque dat a<NFS3_FHSI ZE>;

The nfs_fh3 is the variabl e-1ength opaque object returned by the
server on LOOKUP, CREATE, SYM.INK, MKNOD, LINK, or READDI RPLUS
operations, which is used by the client on subsequent operations
to reference the file. The file handle contains all the

i nformati on the server needs to distinguish an individual file.
To the client, the file handle is opaque. The client stores file
handl es for use in a later request and can conpare two file
handl es fromthe sane server for equality by doing a

byt e- by- byt e conpari son, but cannot otherw se interpret the
contents of file handles. If two file handles fromthe sane
server are equal, they nmust refer to the sane file, but if they
are not equal, no conclusions can be drawn. Servers should try
to maintain a one-to-one correspondence between file handl es and
files, but this is not required. Cients should use file handle
conparisons only to inprove perfornmance, not for correct

behavi or.

Servers can revoke the access provided by a file handl e at any
time. |If the file handle passed in a call refers to a file
system obj ect that no |onger exists on the server or access for
that file handle has been revoked, the error, NFS3ERR STALE
shoul d be returned.

nfsti me3

struct nfstinme3 {
ui nt 32 seconds;
ui nt 32 nseconds;

b

The nfstinme3 structure gives the nunber of seconds and
nanoseconds since nidnight January 1, 1970 G eenwi ch Mean Ti ne.
It is used to pass tine and date infornmation. The tines
associated with files are all server times except in the case of
a SETATTR operation where the client can explicitly set the file
time. A server converts to and fromlocal time when processing
time val ues, preserving as nmuch accuracy as possible. If the
precision of tinestanps stored for a file is less than that

Cal | aghan, el al I nf or mat i onal [Page 21]

RFC 1813 NFS Versi on 3 Protocol June 1995

defined by NFS version 3 protocol, |oss of precision can occur
An adj unct tine maintenance protocol is recommended to reduce
client and server tinme skew

fattr3
struct fattr3 {
ftype3 type;
node3 node;
ui nt 32 nl i nk;
ui d3 ui d;
gi d3 gi d;
si ze3 si ze;
si ze3 used;
specdata3 rdev;
ui nt 64 fsid;

fileid3 fileid;
nf sti me3 ati ne;
nfsti me3 ntine;
nfsti me3 ctine;

b

This structure defines the attributes of a file system object.

It is returned by nost operations on an object; in the case of
operations that affect two objects (for exanple, a MKDI R that
nmodi fies the target directory attributes and defi nes new
attributes for the newy created directory), the attributes for
both may be returned. In sone cases, the attributes are returned
in the structure, wcc_data, which is defined below, in other
cases the attributes are returned alone. The nmain changes from
the NFS version 2 protocol are that many of the fields have been
wi dened and the major/ninor device information is now presented
in a distinct structure rather than being packed into a word.

The fattr3 structure contains the basic attributes of a file.
Al'l servers should support this set of attributes even if they
have to sinulate sone of the fields. Type is the type of the
file. Mode is the protection node bits. Nink is the nunmber of
hard links to the file - that is, the nunber of different nanes
for the same file. Uidis the user ID of the owner of the file.
Gdis the group ID of the group of the file. Size is the size
of the file in bytes. Used is the nunber of bytes of disk space
that the file actually uses (which can be snaller than the size
because the file may have holes or it may be larger due to
fragmentation). Rdev describes the device file if the file type
is NF3CHR or NF3BLK - see specdata3 on page 20. Fsid is the file
systemidentifier for the file system Fileid is a nunber which
uniquely identifies the file withinits file system (on UN X

Cal | aghan, el al I nf or mat i onal [Page 22]

RFC 1813 NFS Versi on 3 Protocol June 1995

this would be the inunber). Atinme is the tinme when the file data
was | ast accessed. Minme is the tinme when the file data was | ast
nodified. Ctine is the tinme when the attributes of the file
were | ast changed. Witing to the file changes the ctine in
addition to the ntine.

The node bits are defined as foll ows:

0x00800 Set user |ID on execution

0x00400 Set group I D on execution

0x00200 Save swapped text (not defined in PGCSIX)

0x00100 Read perm ssion for owner

0x00080 Wite perm ssion for owner

0x00040 Execute pernission for owner on a file. O |ookup
(search) perm ssion for owner in directory.

0x00020 Read perm ssion for group

0x00010 Wite perm ssion for group

0x00008 Execute permission for group on a file. O | ookup
(search) permission for group in directory.

0x00004 Read perm ssion for others.

0x00002 Wite pernission for others.

0x00001 Execute perm ssion for others on a file. O | ookup
(search) perm ssion for others in directory.

post_op_attr

uni on post_op_attr switch (bool attributes_follow) {
case TRUE:
fattr3 attri butes;
case FALSE:
voi d;
i

This structure is used for returning attributes in those
operations that are not directly involved with mani pul ati ng
attributes. One of the principles of this revision of the NFS
protocol is to return the real value fromthe indicated
operation and not an error froman incidental operation. The
post_op_attr structure was designed to allow the server to
recover fromerrors encountered while getting attributes.

This appears to nmake returning attributes optional. However,
server inplenentors are strongly encouraged to nake best effort
to return attributes whenever possible, even when returning an
error.

Cal | aghan, el al I nf or mat i onal [Page 23]

RFC 1813 NFS Versi on 3 Protocol June 1995

wee_attr

struct wcc_attr {

si ze3 si ze;
nfstime3 mi ne;
nf sti me3 ctine;

b

This is the subset of pre-operation attributes needed to better
support the weak cache consistency semantics. Size is the file
size in bytes of the object before the operation. Mine is the
tinme of last nodification of the object before the operation
Ctinme is the time of last change to the attributes of the object
before the operation. See discussion in wcc_attr on page 24.

The use of ntine by clients to detect changes to file system
objects residing on a server is dependent on the granularity of
the ti me base on the server

pre_op_attr

union pre_op_attr switch (bool attributes_follow {
case TRUE:
wcc_attr attributes
case FALSE:
voi d;
i

wcc_dat a

struct wcc_data {
pre_op_attr bef or e;
post_op_attr after

When a client perforns an operation that nodifies the state of a
file or directory on the server, it cannot i mediately determ ne
fromthe post-operation attributes whether the operation just
performed was the only operation on the object since the I|ast
time the client received the attributes for the object. This is
important, since if an intervening operation has changed the
object, the client will need to invalidate any cached data for
the object (except for the data that it just wote).

To deal with this, the notion of weak cache consistency data or
wcc_data is introduced. A wcc_data structure consists of certain
key fields fromthe object attributes before the operation
together with the object attributes after the operation. This

Cal | aghan, el al I nf or mat i onal [Page 24]

RFC 1813 NFS Versi on 3 Protocol June 1995

information allows the client to nanage its cache nore
accurately than in NFS version 2 protocol inplenmentations. The
term weak cache consistency, enphasizes the fact that this
mechani sm does not provide the strict server-client consistency
that a cache consi stency protocol would provide.

In order to support the weak cache consistency nodel, the server
will need to be able to get the pre-operation attributes of the
obj ect, performthe intended nodify operation, and then get the
post-operation attributes atomcally. If there is a wi ndow for
the object to get nodified between the operation and either of
the get attributes operations, then the client will not be able
to determ ne whether it was the only entity to nodify the
object. Sone information will have been | ost, thus weakening the
weak cache consi stency guarant ees.

post _op_fh3

uni on post_op_fh3 switch (bool handle follows) {
case TRUE:
nfs_fh3 handle;
case FALSE:
voi d;
s

One of the principles of this revision of the NFS protocol is to
return the real value fromthe indicated operation and not an
error froman incidental operation. The post_op_fh3 structure
was designed to allow the server to recover fromerrors
encountered while constructing a file handle.

This is the structure used to return a file handle fromthe
CREATE, MKDI R, SYM.I NK, MKNCD, and READDI RPLUS requests. |In each
case, the client can get the file handle by issuing a LOOKUP
request after a successful return fromone of the listed
operations. Returning the file handle is an optim zation so that
the client is not forced to immediately issue a LOOKUP request
to get the file handle.

sattr3

enum ti ne_how {

DONT_CHANGE = 0,
SET_TO SERVER TIME = 1,
SET_TO_CLI ENT_TIME = 2

s

uni on set_node3 switch (bool set it) {

Cal | aghan, el al I nf or mat i onal [Page 25]

RFC 1813 NFS Versi on 3 Protocol June 1995

case TRUE:

node3 node;
defaul t:

voi d;
b

union set_uid3 switch (bool set it) {
case TRUE:
ui d3 ui d;
defaul t:
voi d;
b

union set _gid3 switch (bool set it) {
case TRUE:
gi d3 gi d;
defaul t:
voi d;
s

uni on set_size3 switch (bool set_it) {
case TRUE:
si ze3 si ze;
defaul t:
voi d;
}s

union set_atime switch (tinme_how set _it) {
case SET_TO CLI ENT_TI ME:
nfstime3 atine;
defaul t:
voi d;
i

union set_ntime switch (time_how set _it) {
case SET_TO_CLI ENT_TI ME:
nfstime3 ntine;
defaul t:
voi d;
s

struct sattr3 {
set _node3 node;
set _ui d3 ui d;
set _gi d3 gi d;
set _size3 si ze;
set _atine atine;
set_nt