Definition of Managed Objects for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)

Abstract

This document defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines objects for managing IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs).

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7388.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

This document defines a portion of the Management Information Base (MIB) for use with network management protocols. In particular it defines objects for managing IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) [RFC4944].

While a MIB module provides a direct binding for accessing data via the Simple Network Management Protocol (SNMP) [RFC3410], supporting SNMP may not always be affordable on constrained devices. Other protocols to access data modeled in MIB modules are possible and proposals have been made recently to provide bindings to the Constrained Application Protocol (CoAP) [RFC7252].

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This document specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].
3. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].

4. Overview

The left part of Figure 1 provides an overview of the IETF protocols designed for constrained devices. The right part lists the MIB modules providing monitoring and troubleshooting support ([RFC4113], [RFC4292], [RFC4293], and [RFC2863]). The LOWPAN-MIB defined in this document fills a hole by providing monitoring and troubleshooting support for the 6LoWPAN layer.

```
+---------------------+-----------------------------+
<table>
<thead>
<tr>
<th>Protocol Layer</th>
<th>MIB Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoAP [RFC7252]</td>
<td></td>
</tr>
<tr>
<td>+---------------------+-----------------------------+</td>
<td>UDP-MIB [RFC4113]</td>
</tr>
<tr>
<td></td>
<td>+-----------------------------+</td>
</tr>
<tr>
<td></td>
<td>IPv6 [RFC2460]</td>
</tr>
<tr>
<td></td>
<td>ICMPv6 [RFC4443]</td>
</tr>
<tr>
<td>+---------------------+-----------------------------+</td>
<td>+-----------------------------+</td>
</tr>
<tr>
<td>6LoWPAN [RFC4944]</td>
<td>LOWPAN-MIB [RFC7388]</td>
</tr>
<tr>
<td>+---------------------+-----------------------------+</td>
<td>+-----------------------------+</td>
</tr>
<tr>
<td>IF-MIB [RFC2863]</td>
<td></td>
</tr>
<tr>
<td>+---------------------+-----------------------------+</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.15.4, ...</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Protocol Layers and MIB Modules
```

The LOWPAN-MIB module is primarily a collection of counters that reflect how 6LoWPAN datagrams are processed by the 6LoWPAN layer. The objects are defined twice: once to report the global statistics as seen by the 6LoWPAN layer and once to report per-interface 6LoWPAN layer statistics. The per-interface statistics are optional to implement. The object identifier registration tree has the following structure:
----- lowpanMIB(1.3.6.1.2.1.226)
+----- lowpanNotifications(0)
+----- lowpanObjects(1)
    +----- lowpanStats(1)
        |  +-- lowpanReasmTimeout(1) Unsigned32
        |  +-- lowpanInReceives(2) Counter32
        |  +-- lowpanInHdrErrors(3) Counter32
        |  +-- lowpanInMeshReceives(4) Counter32
        |  +-- lowpanInMeshForwards(5) Counter32
        |  +-- lowpanInMeshDelivers(6) Counter32
        |  +-- lowpanInReasmReqds(7) Counter32
        |  +-- lowpanInReasmFails(8) Counter32
        |  +-- lowpanInReasmOKs(9) Counter32
        |  +-- lowpanInCompReqds(10) Counter32
        |  +-- lowpanInCompFails(11) Counter32
        |  +-- lowpanInCompOKs(12) Counter32
        |  +-- lowpanInDiscards(13) Counter32
        |  +-- lowpanInDelivers(14) Counter32
        |  +-- lowpanOutRequests(15) Counter32
        |  +-- lowpanOutCompReqds(16) Counter32
        |  +-- lowpanOutCompFails(17) Counter32
        |  +-- lowpanOutCompOKs(18) Counter32
        |  +-- lowpanOutFragReqds(19) Counter32
        |  +-- lowpanOutFragFails(20) Counter32
        |  +-- lowpanOutFragOKs(21) Counter32
        |  +-- lowpanOutFragCreates(22) Counter32
        |  +-- lowpanOutMeshHopLimitExceeds(23) Counter32
        |  +-- lowpanOutMeshNoRoutes(24) Counter32
        |  +-- lowpanOutMeshRequests(25) Counter32
        |  +-- lowpanOutMeshForwards(26) Counter32
        |  +-- lowpanOutMeshTransmits(27) Counter32
        |  +-- lowpanOutDiscards(28) Counter32
        |  +-- lowpanOutTransmits(29) Counter32
        +----- lowpanIfStatsTable(2)
            +----- lowpanIfStatsEntry(1) [ifIndex]
                |  +-- lowpanIfReasmTimeout(1) Unsigned32
                |  +-- lowpanIfInReceives(2) Counter32
                |  +-- lowpanIfInHdrErrors(3) Counter32
                |  +-- lowpanIfInMeshReceives(4) Counter32
                |  +-- lowpanIfInMeshForwards(5) Counter32
                |  +-- lowpanIfInMeshDelivers(6) Counter32
                |  +-- lowpanIfInReasmReqds(7) Counter32
                |  +-- lowpanIfInReasmFails(8) Counter32
                |  +-- lowpanIfInReasmOKs(9) Counter32
                |  +-- lowpanIfInCompReqds(10) Counter32
                |  +-- lowpanIfInCompFails(11) Counter32
                |  +-- lowpanIfInCompOKs(12) Counter32
                |  +-- lowpanIfInDiscards(13) Counter32
The counters defined in the LOWPAN-MIB module provide information about the 6LoWPAN datagrams received and transmitted and how they are processed in the 6LoWPAN layer. For link layers that use the 6LoWPAN dispatch byte as defined in [RFC4944] (e.g., IEEE 802.15.4), a 6LoWPAN datagram is a datagram with a dispatch byte matching the bit patterns 01xxxxxx, 10xxxxxx, or 11xxxxxx. Datagrams with a dispatch byte matching the bit pattern 00xxxxxx (NALP - not a LoWPAN frame) are not considered to be 6LoWPAN datagrams by this specification. Other radio technologies may use different mechanisms to identify 6LoWPAN datagrams (e.g., the BLUETOOTH Low-Energy Logical Link Control and Adaptation Protocol uses Channel Identifiers [IPV6-BTLE]).

The Case Diagram [CASE] in Figure 3 illustrates the conceptual relationships between the counters. Implementations may choose to implement the processing of 6LoWPAN datagrams in a different order.

The generic InDiscards and OutDiscards counters can be incremented anytime 6LoWPAN datagrams are discarded due to reasons not covered by the other more specific counters. For example, an implementation...
discarding 6LoWPAN datagrams while all buffers are used for ongoing packet reassemblies will increment the relevant InDiscards counters for each discarded 6LoWPAN datagram.

IPv6 layer

\[\text{IPv6 layer} \]

<table>
<thead>
<tr>
<th>InDelivers</th>
<th>+--^-+</th>
<th>OutRequests</th>
<th>^</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>InDiscards</td>
<td>&lt;-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InCompOKs</td>
<td>.--&gt;</td>
<td>--&gt;.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InCompFails</td>
<td>&lt;--</td>
<td></td>
<td>+--&gt; OutCompFails</td>
<td></td>
</tr>
<tr>
<td>InCompReqds</td>
<td>`</td>
<td></td>
<td>+--'&gt; OutCompOKs</td>
<td></td>
</tr>
<tr>
<td>InReasmOKs</td>
<td>, --&gt;</td>
<td>+--&gt; OutFragFails</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InReasmFails</td>
<td>&lt;--</td>
<td></td>
<td>-+- OutFragOKs</td>
<td></td>
</tr>
<tr>
<td>InReasmReqds</td>
<td>`&lt;--</td>
<td></td>
<td>+&lt;--' OutFragCreates</td>
<td></td>
</tr>
<tr>
<td>InMeshDelivers</td>
<td>`&lt;--.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InMeshForwds</td>
<td></td>
<td></td>
<td>+&lt;--'. OutMeshHopLimitExceeds</td>
<td></td>
</tr>
<tr>
<td>InMeshReceives</td>
<td>+--'&gt;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+--&gt;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+--&gt;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>`&lt;-&gt;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>`&lt;--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+&lt;--'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InHdrErrors</td>
<td>&lt;--</td>
<td></td>
<td>+--&gt; OutDiscards</td>
<td></td>
</tr>
<tr>
<td>InReceives</td>
<td>+--&gt;^-+</td>
<td>OutTransmits</td>
<td>^</td>
<td>v</td>
</tr>
</tbody>
</table>

Figure 3: Conceptual Relationship between LOWPAN-MIB Counters

The fragmentation-related counters have been modeled after the fragmentation-related counters of the IP-MIB [RFC4293]. The discard counters have been placed at the end of the input and output chains, but they can be bumped any time if a datagram is discarded for a reason not covered by the other counters.

The compression-related counters provide insights into compression requests and, in particular, compression-related failures. Note that the diagram is conceptual in the sense that compression happens after reassembly for incoming 6LoWPAN datagrams, and compression happens after...
before fragmentation for outgoing 6LoWPAN datagrams. Implementations may choose to implement things slightly differently. For example, implementations may decompress FRAG1 fragments as soon as they are received, not waiting for reassembly to complete.

The counters related to MESH header processing do not have an explicit discard counter. Implementations that do not support mesh forwarding MUST count the number of received 6LoWPAN datagrams with a MESH header (lowpanInMeshReceives), but they MUST NOT increment the lowpanInMeshReceives and lowpanInMeshDelivers counters if these 6LoWPAN datagrams are dropped.

5. Relationship to Other MIB Modules

The MIB module imports definitions from SNMPv2-SMI [RFC2578], SNMPv2-CONF [RFC2580], and IF-MIB [RFC2863].

6. Definitions

LOWPAN-MIB DEFINITIONS ::= BEGIN

IMPORTS
  MODULE-IDENTITY, OBJECT-TYPE, Unsigned32, Counter32, mib-2
  FROM SNMPv2-SMI  -- RFC 2578
  OBJECT-GROUP, MODULE-COMPLIANCE
  FROM SNMPv2-CONF  -- RFC 2580
  ifIndex FROM IF-MIB;  -- RFC 2863

lowpanMIB MODULE-IDENTITY
LAST-UPDATED "201410100000Z"  -- October 10, 2014
ORGANIZATION
"IETF IPv6 over Networks of Resource-constrained Nodes Working Group"
CONTACT-INFO
"WG Email: 6lo@ietf.org
WG Web: http://tools.ietf.org/wg/6lo/

Juergen Schoenwaelder
Jacobs University Bremen
Email: j.schoenwaelder@jacobs-university.de

Anuj Sehgal
Jacobs University Bremen
Email: s.anuj@jacobs-university.de

Tina Tsou
Huawei Technologies
Email: tina.tsou.zouting@huawei.com
The MIB module for monitoring nodes implementing the IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) protocol.

Copyright (c) 2014 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).

REVISION "201410100000Z" -- October 10, 2014

DESCRIPTION
"Initial version, published as RFC 7388."

::= { mib-2 226 }

-- object definitions

lowpanNotifications OBJECT IDENTIFIER ::= { lowpanMIB 0 }
lowpanObjects OBJECT IDENTIFIER ::= { lowpanMIB 1 }
lowpanConformance OBJECT IDENTIFIER ::= { lowpanMIB 2 }

lowpanStats OBJECT IDENTIFIER ::= { lowpanObjects 1 }

lowpanReasmTimeout OBJECT-TYPE
SYNTAX       Unsigned32
UNITS         "seconds"
MAX-ACCESS   read-only
STATUS       current
DESCRIPTION
"The maximum number of seconds that received fragments are held while they are awaiting reassembly at this entity."
::= { lowpanStats 1 }

lowpanInReceives OBJECT-TYPE
SYNTAX       Counter32
MAX-ACCESS   read-only
STATUS       current
DESCRIPTION
"The total number of 6LoWPAN datagrams received, including
those received in error."
::= { lowpanStats 2 }

lowpanInHdrErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of received 6LoWPAN datagrams discarded due to
errors in their headers, including unknown dispatch values."
::= { lowpanStats 3 }

lowpanInMeshReceives OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of received 6LoWPAN datagrams with a MESH
header."
::= { lowpanStats 4 }

lowpanInMeshForwds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of received 6LoWPAN datagrams requiring mesh
forwarding."
::= { lowpanStats 5 }

lowpanInMeshDelivers OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of received 6LoWPAN datagrams with a MESH header
delivered to the local system."
::= { lowpanStats 6 }

lowpanInReasmReqds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of received 6LoWPAN fragments that needed to be reassembled. This includes both FRAG1 and FRAGN 6LoWPAN datagrams."
::= { lowpanStats 7 }

lowpanInReasmFails OBJECT-TYPE
SYNTAX      Counter32
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION
"The number of failures detected by the re-assembly algorithm (e.g., timeouts). Note that this is not necessarily a count of discarded 6LoWPAN fragments since implementations can lose track of the number of fragments by combining them as received."
::= { lowpanStats 8 }

lowpanInReasmOKs OBJECT-TYPE
SYNTAX      Counter32
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION
"The number of IPv6 packets successfully reassembled."
::= { lowpanStats 9 }

lowpanInCompReqds OBJECT-TYPE
SYNTAX      Counter32
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION
"The number of 6LoWPAN datagrams requiring header decompression."
::= { lowpanStats 10 }

lowpanInCompFails OBJECT-TYPE
SYNTAX      Counter32
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION
"The number of 6LoWPAN datagrams where header decompression failed (e.g., because the necessary context information was not available)."
::= { lowpanStats 11 }
lowpanInCompOKs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams where header decompression was successful."
::= { lowpanStats 12 }

lowpanInDiscards OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of received 6LoWPAN datagrams that were discarded (e.g., for lack of buffer space) even though no problems were encountered to prevent their continued processing. Note that this counter does not include any datagrams discarded due to a reassembly failure or a compression failure."
::= { lowpanStats 13 }

lowpanInDelivers OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of IPv6 packets successfully delivered to the IPv6 layer."
::= { lowpanStats 14 }

lowpanOutRequests OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of IPv6 packets supplied by the IPv6 layer."
::= { lowpanStats 15 }

lowpanOutCompReqds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of IPv6 packets for which header compression was attempted."
::= { lowpanStats 16 }
lowpanOutCompFails OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of IPv6 packets for which header compression failed."
 ::= { lowpanStats 17 }

lowpanOutCompOKs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of IPv6 packets for which header compression was successful."
 ::= { lowpanStats 18 }

lowpanOutFragReqs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of IPv6 packets that required fragmentation in order to be transmitted."
 ::= { lowpanStats 19 }

lowpanOutFragFails OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of IPv6 packets that have been discarded because fragmentation failed."
 ::= { lowpanStats 20 }

lowpanOutFragOKs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of IPv6 packets that have been successfully fragmented."
 ::= { lowpanStats 21 }

lowpanOutFragCreates OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN fragments that have been generated as a result of fragmentation. This includes both FRAG1 and FRAGN 6LoWPAN datagrams."
::= { lowpanStats 22 }

lowpanOutMeshHopLimitExceeds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams with a MESH header that were dropped because the hop limit was exceeded."
::= { lowpanStats 23 }

lowpanOutMeshNoRoutes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams with a MESH header that were dropped because there was no forwarding information available."
::= { lowpanStats 24 }

lowpanOutMeshRequests OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams requiring MESH header encapsulation."
::= { lowpanStats 25 }

lowpanOutMeshForwds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams with a MESH header for which suitable forwarding information was available."
::= { lowpanStats 26 }

lowpanOutMeshTransmits OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams with a MESH header created."
::= { lowpanStats 27 }

lowpanOutDiscards OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of IPv6 packets that were discarded (e.g., for lack of buffer space) even though no problem was encountered to prevent their transmission to their destination."
::= { lowpanStats 28 }

lowpanOutTransmits OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of 6LoWPAN datagram that this entity supplied to the lower layers for transmission."
::= { lowpanStats 29 }

lowpanIfStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF LowpanIfStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table providing per-interface statistics."
::= { lowpanObjects 2 }

LowpanIfStatsEntry OBJECT-TYPE
SYNTAX LowpanIfStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry providing statistics for a specific interface."
INDEX { ifIndex }
::= { lowpanIfStatsTable 1 }

LowpanIfStatsEntry ::= SEQUENCE {
    lowpanIfReasmTimeout Unsigned32,
    lowpanIfInReceives Counter32,
    lowpanIfInHdrErrors Counter32,
    lowpanIfInMeshReceives Counter32,
    lowpanIfInMeshForwds Counter32,
}
lowpanIfInMeshDelivers Counter32,
lowpanIfInReasmReqds Counter32,
lowpanIfInReasmFails Counter32,
lowpanIfInReasmOKs Counter32,
lowpanIfInCompReqds Counter32,
lowpanIfInCompFails Counter32,
lowpanIfInCompOKs Counter32,
lowpanIfInDiscards Counter32,
lowpanIfInDelivers Counter32,
lowpanIfOutRequests Counter32,
lowpanIfOutCompReqds Counter32,
lowpanIfOutCompFails Counter32,
lowpanIfOutCompOKs Counter32,
lowpanIfOutFragReqds Counter32,
lowpanIfOutFragFails Counter32,
lowpanIfOutFragOKs Counter32,
lowpanIfOutFragCreates Counter32,
lowpanIfOutMeshHopLimitExceeds Counter32,
lowpanIfOutMeshNoRoutes Counter32,
lowpanIfOutMeshRequests Counter32,
lowpanIfOutMeshForwds Counter32,
lowpanIfOutMeshTransmits Counter32,
lowpanIfOutDiscards Counter32,
lowpanIfOutTransmits Counter32

lowpanIfReasmTimeout OBJECT-TYPE
SYNTAX Unsigned32
UNITS "seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The maximum number of seconds that received fragments are
held while they are awaiting reassembly at this interface."
::= { lowpanIfStatsEntry 1 }

lowpanIfInReceives OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of 6LoWPAN datagrams received on this
interface, including those received in error."
::= { lowpanIfStatsEntry 2 }

lowpanIfInHdrErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
The number of 6LoWPAN datagrams received on this interface that were discarded due to errors in their headers, including unknown dispatch values.

::= { lowpanIfStatsEntry 3 }

lowpanIfInMeshReceives OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams received on this interface with a MESH header."
::= { lowpanIfStatsEntry 4 }

lowpanIfInMeshForwds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams received on this interface requiring mesh forwarding."
::= { lowpanIfStatsEntry 5 }

lowpanIfInMeshDelivers OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams received on this interface with a MESH header delivered to the local system."
::= { lowpanIfStatsEntry 6 }

lowpanIfInReasmReqds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN fragments received on this interface that needed to be reassembled. This includes both FRAG1 and FRAGN 6LoWPAN datagrams."
::= { lowpanIfStatsEntry 7 }

lowpanIfInReasmFails OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
lowpanIfStatsEntry 8

**lowpanIfInReasmOKs**

**SYNTAX**

Counter32

**MAX-ACCESS**

read-only

**STATUS**

current

**DESCRIPTION**

"The number of IPv6 packets successfully reassembled from fragments received on this interface."

::= { lowpanIfStatsEntry 9 }

**lowpanIfInCompReqds**

**SYNTAX**

Counter32

**MAX-ACCESS**

read-only

**STATUS**

current

**DESCRIPTION**

"The number of 6LoWPAN datagrams received on this interface requiring header decompression."

::= { lowpanIfStatsEntry 10 }

**lowpanIfInCompFails**

**SYNTAX**

Counter32

**MAX-ACCESS**

read-only

**STATUS**

current

**DESCRIPTION**

"The number of 6LoWPAN datagrams received on this interface where header decompression failed (e.g., because the necessary context information was not available)."

::= { lowpanIfStatsEntry 11 }

**lowpanIfInCompOKs**

**SYNTAX**

Counter32

**MAX-ACCESS**

read-only

**STATUS**

current

**DESCRIPTION**

"The number of 6LoWPAN datagrams received on this interface where header decompression was successful."

::= { lowpanIfStatsEntry 12 }

 STATUS current
 DESCRIPTION
 "The number of failures detected by the reassembly algorithm (e.g., timeouts) for datagrams received on this interface. Note that this is not necessarily a count of discarded 6LoWPAN fragments since implementations can lose track of the number of fragments by combining them as received."
 ::= { lowpanIfStatsEntry 8 }
lowpanIfInDiscards OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams received on this
interface that were discarded (e.g., for lack of buffer
space) even though no problems were encountered to
prevent their continued processing. Note that this
counter does not include any datagrams discarded due
to a reassembly failure or a compression failure."
::= { lowpanIfStatsEntry 13 }

lowpanIfInDelivers OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of IPv6 packets received on this
interface that were successfully delivered to the
IPv6 layer."
::= { lowpanIfStatsEntry 14 }

lowpanIfOutRequests OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of IPv6 packets supplied by the IPv6
layer to be sent over this interface."
::= { lowpanIfStatsEntry 15 }

lowpanIfOutCompReqds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of IPv6 packets to be sent over
this interface for which header compression was
attempted."
::= { lowpanIfStatsEntry 16 }

lowpanIfOutCompFails OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of IPv6 packets to be sent over
this interface for which header compression failed."
::= { lowpanIfStatsEntry 17 }

lowpanIfOutCompOKs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of IPv6 packets to be sent over
this interface for which header compression was
successful."
::= { lowpanIfStatsEntry 18 }

lowpanIfOutFragReqds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of IPv6 packets to be sent over this
interface that required fragmentation in order
to be transmitted."
::= { lowpanIfStatsEntry 19 }

lowpanIfOutFragFails OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of IPv6 packets to be sent over this
interface that have been discarded because
fragmentation failed."
::= { lowpanIfStatsEntry 20 }

lowpanIfOutFragOKs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of IPv6 packets to be sent over this
interface that have been successfully fragmented."
::= { lowpanIfStatsEntry 21 }

lowpanIfOutFragCreates OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN fragments that have been
generated on this interface as a result of
fragmentation. This includes both FRAG1 and FRAGN
6LoWPAN datagrams."
::= { lowpanIfStatsEntry 22 }

lowpanIfOutMeshHopLimitExceeds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams to be sent on this
interface with a MESH header that were dropped
because the hop limit was exceeded."
::= { lowpanIfStatsEntry 23 }

lowpanIfOutMeshNoRoutes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams to be sent on this
interface with a MESH header that were dropped
because there was no forwarding information available."
::= { lowpanIfStatsEntry 24 }

lowpanIfOutMeshRequests OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams to be sent on this
interface requiring MESH header encapsulation."
::= { lowpanIfStatsEntry 25 }

lowpanIfOutMeshForwds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of 6LoWPAN datagrams to be sent on this
interface with a MESH header for which suitable
forwarding information was available."
::= { lowpanIfStatsEntry 26 }
lowpanIfOutMeshTransmits OBJECT-TYPE
SYNTAX      Counter32
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION
  "The number of 6LoWPAN datagrams to be sent on this
  interface with a MESH header created."
 ::= { lowpanIfStatsEntry 27 }

lowpanIfOutDiscards OBJECT-TYPE
SYNTAX      Counter32
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION
  "The number of IPv6 packets to be sent over this
  interface that were discarded (e.g., for lack of buffer
  space) even though no problem was encountered to
  prevent their transmission to their destination."
 ::= { lowpanIfStatsEntry 28 }

lowpanIfOutTransmits OBJECT-TYPE
SYNTAX      Counter32
MAX-ACCESS  read-only
STATUS      current
DESCRIPTION
  "The total number of 6LoWPAN datagrams to be sent on
  this interface that this entity supplied to the lower
  layers for transmission."
 ::= { lowpanIfStatsEntry 29 }

-- conformance definitions

lowpanGroups OBJECT IDENTIFIER ::= { lowpanConformance 1 }
lowpanCompliances OBJECT IDENTIFIER ::= { lowpanConformance 2 }

lowpanCompliance MODULE-COMPLIANCE
STATUS      current
DESCRIPTION
  "Compliance statement for systems that implement 6LoWPAN."
MODULE       -- this module
MANDATORY-GROUPS {
  lowpanStatsGroup
}
GROUP        lowpanStatsMeshGroup
DESCRIPTION
  "This group is mandatory for implementations that process
  or forward 6LoWPAN datagrams with a MESH header."
GROUP        lowpanIfStatsGroup
DESCRIPTION
"This group is mandatory for implementations that expose
per-interface statistics."

GROUP lowpanIfStatsMeshGroup
DESCRIPTION
"This group is mandatory for implementations that expose
per-interface statistics and that process or forward
6LoWPAN datagrams with a MESH header."
::= { lowpanCompliances 1 }

lowpanStatsGroup OBJECT-GROUP
OBJECTS {
  lowpanReasmTimeout,
  lowpanInReceives,
  lowpanInHdrErrors,
  lowpanInMeshReceives,
  lowpanInReasmRegds,
  lowpanInReasmFails,
  lowpanInReasmOKs,
  lowpanInCompRegds,
  lowpanInCompFails,
  lowpanInCompOKs,
  lowpanInDiscards,
  lowpanInDelivers,
  lowpanOutRequests,
  lowpanOutCompRegds,
  lowpanOutCompFails,
  lowpanOutCompOKs,
  lowpanOutFragRegds,
  lowpanOutFragFails,
  lowpanOutFragOKs,
  lowpanOutFragCreates,
  lowpanOutDiscards,
  lowpanOutTransmits
}
STATUS current
DESCRIPTION
"A collection of objects providing information and
statistics about the processing of 6LoWPAN datagrams,
excluding counters covering the processing of datagrams
with a MESH header."
::= { lowpanGroups 1 }

lowpanStatsMeshGroup OBJECT-GROUP
OBJECTS {
  lowpanInMeshForwds,
  lowpanInMeshDelivers,
  lowpanOutMeshHopLimitExceeds,
lowpanOutMeshNoRoutes,
lowpanOutMeshRequests,
lowpanOutMeshForwds,
lowpanOutMeshTransmits
}

STATUS current
DESCRIPTION
"A collection of objects providing information and statistics about the processing of 6LoWPAN datagrams with a MESH header."
::= { lowpanGroups 2 }

lowpanIfStatsGroup OBJECT-GROUP
OBJECTS {
    lowpanIfReasmTimeout,
    lowpanIfInReceives,
    lowpanIfInHdrErrors,
    lowpanIfInMeshReceives,
    lowpanIfInReasmReqds,
    lowpanIfInReasmFails,
    lowpanIfInReasmOKs,
    lowpanIfInCompReqds,
    lowpanIfInCompFails,
    lowpanIfInCompOKs,
    lowpanIfInDiscards,
    lowpanIfInDelivers,
    lowpanIfOutRequests,
    lowpanIfOutCompReqds,
    lowpanIfOutCompFails,
    lowpanIfOutCompOKs,
    lowpanIfOutFragReqds,
    lowpanIfOutFragFails,
    lowpanIfOutFragOKs,
    lowpanIfOutFragCreates,
    lowpanIfOutDiscards,
    lowpanIfOutTransmits
}

STATUS current
DESCRIPTION
"A collection of objects providing per-interface information and statistics about the processing of 6LoWPAN datagrams, excluding counters covering the processing of datagrams with a MESH header."
::= { lowpanGroups 3 }

Schoenwaelder, et al. Standards Track [Page 23]
lowpanIfStatsMeshGroup OBJECT-GROUP
  OBJECTS {
    lowpanIfInMeshForwds,
    lowpanIfInMeshDelivers,
    lowpanIfOutMeshHopLimitExceeds,
    lowpanIfOutMeshNoRoutes,
    lowpanIfOutMeshRequests,
    lowpanIfOutMeshForwds,
    lowpanIfOutMeshTransmits
  }
  STATUS       current
  DESCRIPTION  "A collection of objects providing per-interface
                information and statistics about the processing
                of 6LoWPAN datagrams with a MESH header."
  ::= { lowWPANGroups 4 }
END

7. Security Considerations

There are no management objects defined in this MIB module that have
a MAX-ACCESS clause of read-write and/or read-create. So, if this
MIB module is implemented correctly, then there is no risk that an
intruder can alter or create any management objects of this MIB
module via direct SNMP SET operations.

Some of the readable objects in this MIB module (i.e., objects with a
MAX-ACCESS other than not-accessible) may be considered sensitive or
vulnerable in some network environments. It is thus important to
control even GET and/or NOTIFY access to these objects and possibly
to even encrypt the values of these objects when sending them over
the network via SNMP.

The read-only counters provide insights into the amount of 6LoWPAN
traffic a node is receiving or transmitting. This might provide
information regarding whether a device is regularly exchanging
information with other devices or whether a device is mostly not
participating in any communication (e.g., the device might be
"easier" to take away unnoticed). The reassembly counters could be
used to direct denial-of-service attacks on the reassembly mechanism.

SNMP versions prior to SNMPv3 did not include adequate security.
Even if the network itself is secure (for example by using IPsec),
even then, there is no control as to who on the secure network is
allowed to access and GET/SET (read/change/create/delete) the objects
in this MIB module.
It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], Section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

8. IANA Considerations

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER value recorded in the SMI Numbers registry:

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>OBJECT IDENTIFIER value</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowpanMIB</td>
<td>{ mib-2 226 }</td>
</tr>
</tbody>
</table>

9. References

9.1. Normative References


9.2. Informative References


Acknowledgements

This specification borrows heavily from the IP-MIB defined in [RFC4293].

Juergen Schoenwaelder and Anuj Sehgal were partly funded by Flamingo, a Network of Excellence project (ICT-318488) supported by the European Commission under its Seventh Framework Programme.

Authors’ Addresses

Juergen Schoenwaelder
Jacobs University
Campus Ring 1
Bremen  28759
Germany
EMail: j.schoenwaelder@jacobs-university.de

Anuj Sehgal
Jacobs University
Campus Ring 1
Bremen  28759
Germany
EMail: s.anuj@jacobs-university.de

Tina Tsou
Huawei Technologies
2330 Central Expressway
Santa Clara   CA 95050
United States
EMail: tina.tsou.zouting@huawei.com

Cathy Zhou
Huawei Technologies
Bantian, Longgang District
Shenzhen   518129
China
EMail: cathyzhou@huawei.com

Schoenwaelder, et al.       Standards Track           [Page 27]