Internet Engineering Task Force (IETF) K. Davies

Request for Comments: 7940 ICANN

Category: Standards Track A. Freytag

ISSN: 2070-1721 ASMUS, Inc.
August 2016

Representing Label Generation Rulesets Using XML
Abstract

This document describes a method of representing rules for validating
identifier labels and alternate representations of those labels using
Extensible Markup Language (XML). These policies, known as "Label
Generation Rulesets” (LGRs), are used for the implementation of
Internationalized Domain Names (IDNs), for example. The rulesets are
used to implement and share that aspect of policy defining which

labels and Unicode code points are permitted for registrations, which
alternative code points are considered variants, and what actions may
be performed on labels containing those variants.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7940.

Davies & Freytag Standards Track [Page 1]



RFC 7940 Label Generation Rulesets in XML August 2016

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. INtrodUCtioN ..ueeeviciiiiiee e 4
2. DeSIgN GOoalS .....uuvveeiiiieeeee i 5
3. Normative Language ........ccccovvveeeeeiiiieeeeniiieeee e 6
4. LGR FOrmat ......oouiiiiiiie e 6
4.1. NAMESPACE ....vvvuvuniiiiieieiaaeeeeeeeeeaeaeeeeeeeeeenenes 7
4.2. BaSIC StrUCLUIE ......eoivvveieie e 7
4.3. Metadata ........cocevvveeiieeiiiieeeeeeee e 8
4.3.1. The "version" Element ..........cccovvvveereerennnen. 8
4.3.2. The "date" Element .........coevveeveivivneeerennnn, 9
4.3.3. The "language” Element ...........cccoccvveeennnne 9
4.3.4. The "scope" Element .........cccccceveeiieinnnnnn. 10
4.3.5. The "description” Element ............ccccccoeeeeen. 10
4.3.6. The "validity-start" and "validity-end" Elements ...11
4.3.7. The "unicode-version" Element ...................... 11
4.3.8. The "references" Element ........ccccovevvevnnnnnen 12
5. Code Points and Variants .........cccceeeeeevevvieeeeeeeennnnn. 13
5.1. SEQUENCES .....iiiiiieieieeeeeeeeeeeeeeeeeeeeeeeee 14
5.2. Conditional CoNtexts ........coeeevvvevivriieiiveeeennnn. 15
5.3.Variants .....coooevvveeiiiiiiiie e, 16
5.3.1. Basic Variants .........cccceveeeereerevvvneieeenes 16
5.3.2. The "type" Attribute .........ccccceevviiieeeenns 17
5.3.3. Null Variants ........ccoooeveeivieiiiiieeeeenn. 18
5.3.4. Variants with Reflexive Mapping .............c...... 19
5.3.5. Conditional Variants ............ccceeeevvveeeennnn. 20
5.4. ANNOLAtIONS ....vvoiiiiiiiiei e 22
5.4.1. The "ref" Attribute .......ccoeevviiiiieiieieens 22
5.4.2. The "comment" Attribute ........ccccovvvveereennnnn. 23
5.5. Code Point Tagging ........ccceevruvrereerniiineeeennnnns 23

Davies & Freytag Standards Track [Page 2]



RFC 7940 Label Generation Rulesets in XML August 2016

6. Whole Label and Context Evaluation ..............ccccceeeneee. 23
6.1. BasiC CONCEPLS ...cccvvvvrieeeriiiiieee e 23
6.2. Character Classes ........cooovcvvvivieieieieeeeeeiees 25
6.2.1. Declaring and Invoking Named Classes ............... 25
6.2.2. Tag-Based Classes .........cccoevivvviiiieenennn. 26
6.2.3. Unicode Property-Based Classes ..................... 26
6.2.4. Explicitly Declared Classes ............cccuvveieee. 28
6.2.5. Combined CIasSes .......cccccveeeeeeiiiicnnennnnn, 29
6.3. Whole Label and Context Rules ..............cccccceeeee... 30
6.3.1. The "rule" Element ...........ccccceiiieinnnnnne 31
6.3.2. The Match Operators ..........cccceeeveeeeennnnne 32
6.3.3. The "count" Attribute ..........cccocecvveveennee 33
6.3.4. The "name" and "by-ref" Attributes ................. 34
6.3.5. The "choice" Element ..........ccccccvvvveeeeeenn. 34
6.3.6. Literal Code Point Sequences ..............c.o...... 35
6.3.7. The "any" Element ...........ccoooiiiiiiiienenenn. 35
6.3.8. The "start" and "end" Elements ..................... 35
6.3.9. Example Context Rule from IDNA Specification ....... 36
6.4. Parameterized Context or When Rules ....................... 37
6.4.1. The "anchor" Element .........ccccccceeeveniiinnns 37
6.4.2. The "look-behind" and "look-ahead" Elements ........ 38
6.4.3. Omitting the "anchor" Element ...................... 40
7. The "action” Element .........cccccceieeeiiiiniiiiiiieeee, 40
7.1. The "match" and "not-match" Attributes .................... 41
7.2. Actions with Variant Type Triggers ......ccccceeeevvennnns 41
7.2.1. The "any-variant", "all-variants", and
"only-variants" Attributes ...........cccccceeee.. 41
7.2.2. Example from Tables in the Style of RFC 3743 ....... 44
7.3. Recommended Disposition Values .............ccccvveeeeen. 45
7.4. PreCedencCe .....cccoocuveeeeiiiiiiiie s 45
7.5. Implied ACtiONS .......oceeveveeeeiiiiiiieeeee e, 45
7.6. Default ACtIONS .....coovevviiiiieeeee e 46
8. Processing a Label against an LGR ...........cccocceeeenne 47
8.1. Determining Eligibility for a Label ....................... 47
8.1.1. Determining Eligibility Using Reflexive
Variant Mappings ..........ccoeeecvvvveeieeeeeeenn, 47
8.2. Determining Variants for a Label .............c..c.......... 48
8.3. Determining a Disposition for a Label or Variant Label ....49
8.4. Duplicate Variant Labels ..........ccccccceveeeinninnnns 50
8.5. Checking Labels for Collision ..........ccccccccoeviunnnns 50
9. Conversion to and from Other Formats ............cccccceeeeennn. 51
10. Media TYPE ccooeieeiitiieeet e 51
11. IANA Considerations ..........ccccceevviivereeriiiieeessnnnnn 52
11.1. Media Type Registration ...........cccccevvvvveeernnnne 52
11.2. URN ReQiStration ..........ccccceevrivieeeeeinineeeennnns 53
11.3. Disposition RegiStry .........cocccvviiieeiiieeeennnnnnns 53

Davies & Freytag Standards Track [Page 3]



RFC 7940 Label Generation Rulesets in XML August 2016

1.

12. Security Considerations ........ccccccceveeeeeevvicvnvnnnnnnn. 54
12.1. LGRs Are Only a Partial Remedy for Problem Space ......... 54
12.2. Computational Expense of Complex Tables .................. 54
13. ReferenCes ......cccveeeiiiiiiiiiiiiiiiiee e 55
13.1. Normative References ..........ccccoceeeeeieeeiinininnnns 55
13.2. Informative References ........ccccccovvvveveeviinnnnen, 56
Appendix A. Example Tables .......ccccoccvveveeiiiviiciiiieee, 58
Appendix B. How to Translate Tables Based on RFC 3743 into the
XML Format .......cooeviiiiiiiiiiiiiiieee e 63
Appendix C. Indic Syllable Structure Example ...................... 68
C.1. Reducing Complexity .........ccccceveeeiiniiiiiiiiienennn. 70
Appendix D. RELAX NG Compact Schema .............ocecccvvvvvennnnn. 71
Acknowledgements .........cccooeeecviiiieeniee e 82
AUthOrs’ AdAreSSES ......vvvviiiiiiieeeeeiiiceeee e 82
Introduction

This document specifies a method of using Extensible Markup Language
(XML) to describe Label Generation Rulesets (LGRs). LGRs are
algorithms used to determine whether, and under what conditions, a
given identifier label is permitted, based on the code points it

contains and their context. These algorithms comprise a list of
permissible code points, variant code point mappings, and a set of

rules that act on the code points and mappings. LGRs form part of an
administrator’s policies. In deploying Internationalized Domain

Names (IDNs), they have also been known as IDN tables or variant
tables.

There are other kinds of policies relating to labels that are not
normally covered by LGRs and are therefore not necessarily
representable by the XML format described here. These include, but
are not limited to, policies around trademarks, or prohibition of
fraudulent or objectionable words.

Administrators of the zones for top-level domain registries have
historically published their LGRs using ASCII text or HTML. The
formatting of these documents has been loosely based on the format
used for the Language Variant Table described in [RFC3743].
[RFC4290] also provides a "model table format" that describes a
similar set of functionality. Common to these formats is that the
algorithms used to evaluate the data therein are implicit or

specified elsewhere.

Through the first decade of IDN deployment, experience has shown that
LGRs derived from these formats are difficult to consistently
implement and compare, due to their differing formats. A universal

Davies & Freytag Standards Track [Page 4]



RFC 7940 Label Generation Rulesets in XML August 2016

format, such as one using a structured XML format, will assist by
improving machine readability, consistency, reusability, and
maintainability of LGRs.

When used to represent a simple list of permitted code points, the
format is quite straightforward. At the cost of some complexity in
the resulting file, it also allows for an implementation of more
sophisticated handling of conditional variants that reflects the
known requirements of current zone administrator policies.

Another feature of this format is that it allows many of the
algorithms to be made explicit and machine implementable. A
remaining small set of implicit algorithms is described in this
document to allow commonality in implementation.

While the predominant usage of this specification is to represent IDN
label policy, the format is not limited to IDN usage and may also be
used for describing ASCII domain name label rulesets, or other types
of identifier labels beyond those used for domain names.

2. Design Goals
The following goals informed the design of this format:

o0 The format needs to be implementable in a reasonably
straightforward manner in software.

o The format should be able to be automatically checked for
formatting errors, so that common mistakes can be caught.

0 An LGR needs to be able to express the set of valid code points
that are allowed for registration under a specific administrator’s
policies.

0 An LGR needs to be able to express computed alternatives to a
given identifier based on mapping relationships between code
points, whether one-to-one or many-to-many. These computed
alternatives are commonly known as "variants".

o Variant code points should be able to be tagged with explicit
dispositions or categories that can be used to support registry
policy (such as whether to allocate the computed variant or to
merely block it from usage or registration).

o Variants and code points must be able to be stipulated based on
contextual information. For example, some variants may only be
applicable when they follow a certain code point or when the code
point is displayed in a specific presentation form.

Davies & Freytag Standards Track [Page 5]



RFC 7940 Label Generation Rulesets in XML August 2016

0 The data contained within an LGR must be able to be interpreted
unambiguously, so that independent implementations that utilize
the contents will arrive at the same results.

o0 To the largest extent possible, policy rules should be able to be
specified in the XML format without relying on hidden or built-in
algorithms in implementations.

0 LGRs should be suitable for comparison and reuse, such that one
could easily compare the contents of two or more to see the
differences, to merge them, and so on.

0 As many existing IDN tables as practicable should be able to be
migrated to the LGR format with all applicable interpretation
logic retained.

These requirements are partly derived from reviewing the existing
corpus of published IDN tables, plus the requirements of ICANN’s work
to implement an LGR for the DNS root zone [LGR-PROCEDURE]. In
particular, Section B of that document identifies five specific
requirements for an LGR methodology.

The syntax and rules in [RFC5892] and [RFC3743] were also reviewed.

It is explicitly not the goal of this format to stipulate what code
points should be listed in an LGR by a zone administrator. Which
registration policies are used for a particular zone are outside the
scope of this memo.

3. Normative Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

4. LGR Format

An LGR is expressed as a well-formed XML document [XML] that conforms
to the schema defined in Appendix D.

As XML is case sensitive, an LGR must be authored with the correct
casing. For example, the XML element names MUST be in lowercase as
described in this specification, and matching of attribute values is

only performed in a case-sensitive manner.

A document that is not well-formed, is non-conforming, or violates
other constraints specified in this specification MUST be rejected.

Davies & Freytag Standards Track [Page 6]



RFC 7940 Label Generation Rulesets in XML August 2016

4.1. Namespace
The XML Namespace URI is "urn:ietf:params:xml:ns:lgr-1.0".
See Section 11.2 for more information.

4.2. Basic Structure
The basic XML framework of the document is as follows:

<?xml version="1.0"?>
<lgr xmIns="urn:ietf:params:xml:ns:Igr-1.0">

</I.g}>

The "Igr" element contains up to three sub-elements or sections.
First is an optional "meta” element that contains all metadata
associated with the LGR, such as its authorship, what it is used for,
implementation notes, and references. This is followed by a required
"data" element that contains the substantive code point data.

Finally, an optional "rules" element contains information on rules

for evaluating labels, if any, along with "action" elements providing
for the disposition of labels and computed variant labels.

<?xml version="1.0"?>
<lgr xmIns="urn:ietf:params:xml:ns:Igr-1.0">
<meta>

</meta>
<data>

</data>
<rules>

</rules>
</lgr>

A document MUST contain exactly one "Igr* element. Each "Igr"
element MUST contain zero or one "meta” element, exactly one "data"
element, and zero or one "rules" element; and these three elements
MUST be in that order.

Some elements that are direct or nested child elements of the "rules”
element MUST be placed in a specific relative order to other elements
for the LGR to be valid. An LGR that violates these constraints MUST
be rejected. In other cases, changing the ordering would result in a
valid, but different, specification.

Davies & Freytag Standards Track [Page 7]



RFC 7940 Label Generation Rulesets in XML August 2016

In the following descriptions, required, non-repeating elements or
attributes are generally not called out explicitly, in contrast to
"OPTIONAL" ones, or those that "MAY" be repeated. For attributes
that take lists as values, the elements MUST be space-separated.

4.3. Metadata

The "meta" element expresses metadata associated with the LGR, and
the element SHOULD be included so that the associated metadata are
available as part of the LGR and cannot become disassociated. The
following subsections describe elements that may appear within the
"meta" element.

The "meta" element can be used to identify the author or relevant
contact person, explain the intended usage of the LGR, and provide
implementation notes as well as references. Detailed metadata allow
the LGR document to become self-documenting -- for example, if
rendered in a human-readable format by an appropriate tool.

Providing metadata pertaining to the date and version of the LGR is
particularly encouraged to make it easier for interoperating
consumers to ensure that they are using the correct LGR.

With the exception of the "unicode-version" element, the data

contained within is not required by software consuming the LGR in

order to calculate valid labels or to calculate variants. If

present, the "unicode-version" element MUST be used by a consumer of
the table to identify that it has the correct Unicode property data

to perform operations on the table. This ensures that possible
differences in code point properties between editions of the Unicode
Standard do not impact the product of calculations utilizing an LGR.

4.3.1. The "version" Element
The "version” element is OPTIONAL. It is used to uniquely
identify each version of the LGR. No specific format is required,
but it is RECOMMENDED that it be the decimal representation of a
single positive integer, which is incremented with each revision of
the file.
An example of a typical first edition of a document:

<version>1</version>

The "version" element may have an OPTIONAL "comment" attribute.

<version comment="draft">1</version>

Davies & Freytag Standards Track [Page 8]



RFC 7940 Label Generation Rulesets in XML August 2016

4.3.2. The "date" Element

The OPTIONAL "date" element is used to identify the date the LGR was
posted. The contents of this element MUST be a valid ISO 8601
"full-date" string as described in [RFC3339].

Example of a date:
<date>2009-11-01</date>
4.3.3. The "language" Element

Each OPTIONAL "language" element identifies a language or script for
which the LGR is intended. The value of the "language" element MUST
be a valid language tag as described in [RFC5646]. The tag may refer
to a script plus undefined language if the LGR is not intended for a
specific language.

Example of an LGR for the English language:
<language>en</language>

If the LGR applies to a script rather than a specific language, the
"und" language tag SHOULD be used followed by the relevant script
subtag from [RFC5646]. For example, for a Cyrillic script LGR:

<language>und-Cyrl</language>

If the LGR covers a set of multiple languages or scripts, the
"language" element MAY be repeated. However, for cases of a
script-specific LGR exhibiting insignificant admixture of code points
from other scripts, it is RECOMMENDED to use a single "language"
element identifying the predominant script. In the exceptional case
of a multi-script LGR where no script is predominant, use Zyyy
(Common):

<language>und-Zyyy</language>

Davies & Freytag Standards Track [Page 9]



RFC 7940 Label Generation Rulesets in XML August 2016

4.3.4. The "scope" Element

This OPTIONAL element refers to a scope, such as a domain, to which
this policy is applied. The "type" attribute specifies the type of

scope being defined. A type of "domain" means that the scope is a
domain that represents the apex of the DNS zone to which the LGR is
applied. For that type, the content of the "scope" element MUST be a
domain name written relative to the root zone, in presentation format
with no trailing dot. However, in the unique case of the DNS root

zone, it is represented as ".".
<scope type="domain">example.com</scope>

There may be multiple "scope" tags used -- for example, to reflect a
list of domains to which the LGR is applied.

No other values of the "type" attribute are defined by this

specification; however, this specification can be used for

applications other than domain names. Implementers of LGRs for
applications other than domain names SHOULD define the scope
extension grammar in an IETF specification or use XML namespaces to
distinguish their scoping mechanism distinctly from the base LGR
namespace. An explanation of any custom usage of the scope in the
"description" element is RECOMMENDED.

<scope xmins="http://example.com/ns/scope/1.0">
... content per alternate namespace ...
</scope>

4.3.5. The "description" Element

The "description" element is an OPTIONAL, free-form element that
contains any additional relevant description that is useful for the

user in its interpretation. Typically, this field contains

authorship information, as well as additional context on how the LGR
was formulated and how it applies, such as citations and references
that apply to the LGR as a whole.

This field should not be relied upon for providing instructions on
how to parse or utilize the data contained elsewhere in the
specification. Authors of tables should expect that software
applications that parse and use LGRs will not use the "description”
element to condition the application of the LGR’s data and rules.

Davies & Freytag Standards Track [Page 10]



RFC 7940 Label Generation Rulesets in XML August 2016

The element has an OPTIONAL "type" attribute, which refers to the
Internet media type [RFC2045] of the enclosed data. Typical types
would be "text/plain” or "text/html". The attribute SHOULD be a
valid media type. If supplied, it will be assumed that the contents
are of that media type. If the description lacks a "type" value, it

will be assumed to be plain text ("text/plain™).

4.3.6. The "validity-start" and "validity-end" Elements

The "validity-start" and "validity-end" elements are OPTIONAL
elements that describe the time period from which the contents of the
LGR become valid (are used in registry policy) and time when the
contents of the LGR cease to be used, respectively.

The dates MUST conform to the "full-date" format described in
Section 5.6 of [RFC3339].

<validity-start>2014-03-12</validity-start>
4.3.7. The "unicode-version" Element

Whenever an LGR depends on character properties from a given version
of the Unicode Standard, the version number used in creating the LGR
MUST be listed in the form x.y.z, where x, y, and z are positive

decimal integers (see [Unicode-Versions]). If any software

processing the table does not have access to character property data

of the requisite version, it MUST NOT perform any operations relating

to whole-label evaluation relying on Unicode character properties
(Section 6.2.3).

The value of a given Unicode character property may change between
versions of the Unicode Character Database [UAX44], unless such
change has been explicitly disallowed in [Unicode-Stability]. Itis
RECOMMENDED to only reference properties defined as stable or
immutable. As an alternative to referencing the property, the
information can be presented explicitly in the LGR.

<unicode-version>6.3.0</unicode-version>
It is not necessary to include a "unicode-version" element for LGRs

that do not make use of Unicode character properties; however, it is
RECOMMENDED.

Davies & Freytag Standards Track [Page 11]



RFC 7940 Label Generation Rulesets in XML August 2016

4.3.8. The "references" Element

An LGR may define a list of references that are used to associate
various individual elements in the LGR to one or more normative
references. A common use for references is to annotate that code
points belong to an externally defined collection or standard or to
give normative references for rules.

References are specified in an OPTIONAL "references" element
containing one or more "reference" elements, each with a unique "id"
attribute. Itis RECOMMENDED that the "id" attribute be a zero-based
integer; however, in addition to digits 0-9, it MAY contain uppercase
letters A-Z, as well as a period, hyphen, colon, or underscore. The
value of each "reference" element SHOULD be the citation of a
standard, dictionary, or other specification in any suitable format.

In addition to an "id" attribute, a "reference" element MAY have a
"comment” attribute for an optional free-form annotation.

<references>

<reference id="0">The Unicode Consortium. The Unicode
Standard, Version 8.0.0, (Mountain View, CA: The Unicode
Consortium, 2015. ISBN 978-1-936213-10-8)
http://www.unicode.org/versions/Unicode8.0.0/</reference>

<reference id="1">Big-5: Computer Chinese Glyph and Character
Code Mapping Table, Technical Report C-26, 1984</reference>

<reference id="2" comment="synchronized with Unicode 6.1">
ISO/IEC
10646:2012 3rd edition</reference>

</references>

<data>
<char cp="0620" ref="0 2" />

</data>

A reference is associated with an element by using its id as part of
an optional "ref" attribute (see Section 5.4.1). The "ref" attribute
may be used with many kinds of elements in the "data" or "rules”
sections of the LGR, most notably those defining code points,
variants, and rules. However, a "ref" attribute may not occur in
certain kinds of elements, including references to named character
classes or rules. See below for the description of these elements.

Davies & Freytag Standards Track [Page 12]



RFC 7940 Label Generation Rulesets in XML August 2016

5. Code Points and Variants

The bulk of an LGR is a description of which set of code points is
eligible for a given label. For rulesets that perform operations
that result in potential variants, the code point-level relationships
between variants need to also be described.

The code point data is collected within the "data" element. Within
this element, a series of "char" and "range" elements describe
eligible code points or ranges of code points, respectively.
Collectively, these are known as the repertoire.

Discrete permissible code points or code point sequences (see
Section 5.1) are declared with a "char" element. Here is a minimal
example declaration for a single code point, with the code point
value given in the "cp" attribute:

<char cp="002D"/>

As described below, a full declaration for a "char" element, whether
or not it is used for a single code point or for a sequence (see
Section 5.1), may have optional child elements defining variants.
Both the "char" and "range" elements can take a number of optional
attributes for conditional inclusion, commenting, cross-referencing,
and character tagging, as described below.

Ranges of permissible code points may be declared with a "range"
element, as in this minimal example:

<range first-cp="0030" last-cp="0039"/>

The range is inclusive of the first and last code points. Any
additional attributes defined for a "range" element act as if applied
to each code point within. A "range" element has no child elements.

It is always possible to substitute a list of individually specified

code points for a "range" element. The reverse is not necessarily

the case. Whenever such a substitution is possible, it makes no
difference in processing the data. Tools reading or writing the LGR
format are free to aggregate sequences of consecutive code points of
the same properties into "range" elements.

Code points MUST be represented according to the standard Unicode

convention but without the prefix "U+": they are expressed in
uppercase hexadecimal and are zero-padded to a minimum of 4 digits.

Davies & Freytag Standards Track [Page 13]



RFC 7940 Label Generation Rulesets in XML August 2016

The rationale for not allowing other encoding formats, including

native Unicode encoding in XML, is explored in [UAX42]. The XML
conventions used in this format, such as element and attribute names,
mirror this document where practical and reasonable to do so. Itis
RECOMMENDED to list all "char" elements in ascending order of the
"cp" attribute. Not doing so makes it unnecessarily difficult for
authors and reviewers to check for errors, such as duplications, or

to review and compare against listing of code points in other
documents and specifications.

All "char" elements in the "data" section MUST have distinct "cp"
attributes. The "range" elements MUST NOT specify code point ranges
that overlap either another range or any single code point "char"
elements. An LGR that defines the same code point more than once by
any combination of "char" or "range" elements MUST be rejected.

5.1. Sequences

A sequence of two or more code points may be specified in an LGR --

for example, when defining the source for n:m variant mappings.

Another use of sequences would be in cases when the exact sequence of
code points is required to occur in order for the constituent

elements to be eligible, such as when some code point is only

eligible when preceded or followed by a certain code point. The

following would define the eligibility of the MIDDLE DOT (U+00B7)

only when both preceded and followed by the LATIN SMALL LETTER L
(U+006C):

<char cp="006C 00B7 006C" comment="Catalan middle dot"/>

All sequences defined this way must be distinct, but sub-sequences
may be defined. Thus, the sequence defined here may coexist with
single code point definitions such as:

<char cp="006C" />

As an alternative to using sequences to define a required context, a
"char" or "range" element may specify a conditional context using an
optional "when" attribute as described below in Section 5.2. Using a
conditional context is more flexible because a context is not limited
to a specific sequence of code points. In addition, using a context
allows the choice of specifying either a prohibited or a required
context.

Davies & Freytag Standards Track [Page 14]



RFC 7940 Label Generation Rulesets in XML August 2016

5.2. Conditional Contexts

A conditional context is specified by a rule that must be satisfied
(or, alternatively, must not be satisfied) for a code point in a
given label, often at a particular location in a label.

To specify a conditional context, either a "when" or "not-when"
attribute may be used. The value of each "when" or "not-when"
attribute is a context rule as described below in Section 6.3. This
rule can be a rule evaluating the whole label or a parameterized
context rule. The context condition is met when the rule specified

in the "when" attribute is matched or when the rule in the "not-when"
attribute fails to match. Itis an error to reference a rule that is

not actually defined in the "rules" element.

A parameterized context rule (see Section 6.4) defines the context
immediately surrounding a given code point; unlike a sequence, the
context is not limited to a specific fixed code point but, for

example, may designate any member of a certain character class or a
code point that has a certain Unicode character property.

Given a suitable definition of a parameterized context rule named
"follows-virama", this example specifies that a ZERO WIDTH JOINER
(U+200D) is restricted to immediately follow any of several code
points classified as virama:

<char cp="200D" when="follows-virama" />
For a complete example, see Appendix A.

In contrast, a whole label rule (see Section 6.3) specifies a
condition to be met by the entire label -- for example, that it must
contain at least one code point from a given script anywhere in the
label. In the following example, no digit from either range may
occur in a label that mixes digits from both ranges:

<data>
<range first-cp="0660" last-cp="0669" not-when="mixed-digits"
tag="arabic-indic-digits" />
<range first-cp="06F0" last-cp="06F9" not-when="mixed-digits"
tag="extended-arabic-indic-digits" />
</data>

(See Section 6.3.9 for an example of the "mixed-digits" rule.)

Davies & Freytag Standards Track [Page 15]



RFC 7940 Label Generation Rulesets in XML August 2016

The OPTIONAL "when" or "not-when" attributes are mutually exclusive.
They MAY be applied to both "char" and "range" elements in the "data"
element, including "char" elements defining sequences of code points,
as well as to "var" elements (see Section 5.3.5).

If a label contains one or more code points that fail to satisfy a
conditional context, the label is invalid (see Section 7.5). For
variants, the conditional context restricts the definition of the
variant to the case where the condition is met. Outside the
specified context, a variant is not defined.

5.3. Variants

Most LGRs typically only determine simple code point eligibility, and
for them, the elements described so far would be the only ones
required for their "data" section. Others additionally specify a
mapping of code points to other code points, known as "variants".
What constitutes a variant code point is a matter of policy and

varies for each implementation. The following examples are intended
to demonstrate the syntax; they are not necessarily typical.

5.3.1. Basic Variants

Variant code points are specified using one of more "var" elements as
children of a "char" element. The target mapping is specified using
the "cp" attribute. Other, optional attributes for the "var" element

are described below.

For example, to map LATIN SMALL LETTER V (U+0076) as a variant of
LATIN SMALL LETTER U (U+0075):

<char cp="0075">
<var cp="0076"/>
</char>

A sequence of multiple code points can be specified as a variant of a

single code point. For example, the sequence of LATIN SMALL LETTER O
(U+006F) then LATIN SMALL LETTER E (U+0065) might hypothetically be
specified as a variant for a LATIN SMALL LETTER O WITH DIAERESIS
(U+00F6) as follows:

<char cp="00F6">
<var cp="006F 0065"/>
</char>

The source and target of a variant mapping may both be sequences but
not ranges.

Davies & Freytag Standards Track [Page 16]



RFC 7940 Label Generation Rulesets in XML August 2016

If the source of one mapping is a prefix sequence of the source for
another, both variant mappings will be considered at the same
location in the input label when generating permuted variant labels.
If poorly designed, an LGR containing such an instance of a prefix
relation could generate multiple instances of the same variant label
for the same original label, but with potentially different
dispositions. Any duplicate variant labels encountered MUST be
treated as an error (see Section 8.4).

The "var" element specifies variant mappings in only one direction,
even though the variant relation is usually considered symmetric;
that is, if A is a variant of B, then B should also be a variant of

A. The format requires that the inverse of the variant be given
explicitly to fully specify symmetric variant relations in the LGR.
This has the beneficial side effect of making the symmetry explicit:

<char cp="006F 0065">
<var cp="00F6"/>
</char>

Variant relations are normally not only symmetric but also

transitive. If A is a variant of B and B is a variant of C, then A

is also a variant of C. As with symmetry, these transitive relations
are only part of the LGR if spelled out explicitly. Implementations
that require an LGR to be symmetric and transitive should verify this
mechanically.

All variant mappings are unique. For a given "char" element, all
"var" elements MUST have a unique combination of "cp”, "when", and
"not-when" attributes. Itis RECOMMENDED to list the "var" elements
in ascending order of their target code point sequence. (For "when"

and "not-when" attributes, see Section 5.3.5.)
5.3.2. The "type" Attribute

Variants may be tagged with an OPTIONAL "type" attribute. The value
of the "type" attribute may be any non-empty value not starting with

an underscore and not containing spaces. This value is used to
resolve the disposition of any variant labels created using a given
variant. (See Section 7.2.)

By default, the values of the "type" attribute directly describe the
target policy status (disposition) for a variant label that was
generated using a particular variant, with any variant label being
assigned a disposition corresponding to the most restrictive variant
type. Several conventional disposition values are predefined below
in Section 7. Whenever these values can represent the desired
policy, they SHOULD be used.

Davies & Freytag Standards Track [Page 17]



RFC 7940 Label Generation Rulesets in XML August 2016

<char cp="767C">
<var cp="53D1" type="allocatable"/>
<var cp="5F42" type="blocked"/>
<var cp="9AEA" type="blocked"/>
<var cp="9AEE" type="blocked"/>
</char>

By default, if a variant label contains any instance of one of the
variants of type "blocked", the label would be blocked, but if it
contained only instances of variants to be allocated, it could be
allocated. See the discussion about implied actions in Section 7.6.

The XML format for the LGR makes the relation between the values of
the "type" attribute on variants and the resulting disposition of
variant labels fully explicit. See the discussion in Section 7.2.
Making this relation explicit allows a generalization of the "type"
attribute from directly reflecting dispositions to a more
differentiated intermediate value that is then used in the resolution
of label disposition. Instead of the default action of applying the
most restrictive disposition to the entire label, such a generalized
resolution can be used to achieve additional goals, such as limiting
the set of allocatable variant labels or implementing other policies
found in existing LGRs (see, for example, Appendix B).

Because variant mappings MUST be unique, it is not possible to define
the same variant for the same "char" element with different "type"
attributes (however, see Section 5.3.5).

5.3.3. Null Variants

A null variant is a variant string that maps to no code point. This

is used when a particular code point sequence is considered

discretionary in the context of a whole label. To specify a null

variant, use an empty "cp" attribute. For example, to mark a string

with a ZERO WIDTH NON-JOINER (U+200C) to the same string without the
ZERO WIDTH NON-JOINER:

<char cp="200C">
<var cp=""/>
</char>

This is useful in expressing the intent that some code points in a
label are to be mapped away when generating a canonical variant of
the label. However, in tables that are designed to have symmetric
variant mappings, this could lead to combinatorial explosion if not
handled carefully.

Davies & Freytag Standards Track [Page 18]



RFC 7940 Label Generation Rulesets in XML August 2016

The symmetric form of a null variant is expressed as follows:

<char cp="">
<var cp="200C" type="invalid" />
</char>

A "char" element with an empty "cp" attribute MUST specify at least
one variant mapping. It is strongly RECOMMENDED to use a type of
"invalid" or equivalent when defining variant mappings from null
sequences, so that variant mappings from null sequences are removed
in variant label generation (see Section 5.3.2).

5.3.4. Variants with Reflexive Mapping

At first glance, there seems to be no call for adding variant

mappings for which source and target code points are the same -- that
is, for which the mapping is reflexive, or, in other words, an

identity mapping. Yet, such reflexive mappings occur frequently in
LGRs that follow [RFC3743].

Adding a "var" element allows both a type and a reference id to be
specified for it. While the reference id is not used in processing,
the type of the variant can be used to trigger actions. In permuting
the label to generate all possible variants, the type associated with
a reflexive variant mapping is applied to any of the permuted labels
containing the original code point.

In the following example, let's assume that the goal is to allocate

only those labels that contain a variant that is considered

"preferred” in some way. As defined in the example, the code point
U+3473 exists both as a variant of U+3447 and as a variant of itself
(reflexive mapping). Assuming an original label of "U+3473 U+3447",
the permuted variant "U+3473 U+3473" would consist of the reflexive
variant of U+3473 followed by a variant of U+3447. Given the variant
mappings as defined here, the types for both of the variant mappings
used to generate that particular permutation would have the value
"preferred":

<char cp="3447" ref="0">
<var cp="3473" type="preferred" ref="1 3" />
</char>
<char cp="3473" ref="0">
<var cp="3447" type="blocked" ref="1 3" />
<var cp="3473" type="preferred" ref="0" />
</char>

Davies & Freytag Standards Track [Page 19]



RFC 7940 Label Generation Rulesets in XML August 2016

Having established the variant types in this way, a set of actions
could be defined that return a disposition of "allocatable" or
"activated" for a label consisting exclusively of variants with type
"preferred”, for example. (For details on how to define actions
based on variant types, see Section 7.2.1.)

In general, using reflexive variant mappings in this manner makes it
possible to calculate disposition values using a uniform approach for
all labels, whether they consist of mapped variant code points,
original code points, or a mixture of both. In particular, the
dispositions for two otherwise identical labels may differ based on
which variant mappings were executed in order to generate each of
them. (For details on how to generate variants and evaluate
dispositions, see Section 8.)

Another useful convention that uses reflexive variants is described
below in Section 7.2.1.

5.3.5. Conditional Variants

Fundamentally, variants are mappings between two sequences of code
points. However, in some instances, for a variant relationship to

exist, some context external to the code point sequence must also be
considered. For example, a positional context may determine whether
two code point sequences are variants of each other.

An example of that are Arabic code points, which can have different
forms based on position, with some code points sharing forms, thus
making them variants in the positions corresponding to those forms.
Such positional context cannot be solely derived from the code point
by itself, as the code point would be the same for the various forms.

As described in Section 5.2, an OPTIONAL "when" or "not-when"
attribute may be given for any "var" element to specify required or
prohibited contextual conditions under which the variant is defined.

Assuming that the "rules" element contains suitably defined rules for
"arabic-isolated" and "arabic-final", the following example shows how

to mark ARABIC LETTER ALEF WITH WAVY HAMZA BELOW (U+0673) as a
variant of ARABIC LETTER ALEF WITH HAMZA BELOW (U+0625), but only
when it appears in its isolated or final forms:

<char cp="0625">
<var cp="0673" when="arabic-isolated"/>
<var cp="0673" when="arabic-final"/>
</char>

Davies & Freytag Standards Track [Page 20]



RFC 7940 Label Generation Rulesets in XML August 2016

While a "var" element MUST NOT contain multiple conditions (it is
only allowed a single "when" or "not-when" attribute), multiple "var"
elements using the same mapping MAY be specified with different
"when" or "not-when" attributes. The combination of mapping and
conditional context defines a unique variant.

For each variant label, care must be taken to ensure that at most one
of the contextual conditions is met for variants with the same
mapping; otherwise, duplicate variant labels would be created for the
same input label. Any such duplicate variant labels MUST be treated
as an error; see Section 8.4.

Two contexts may be complementary, as in the following example, which
shows ARABIC LETTER TEH MARBUTA (U+0629) as a variant of ARABIC
LETTER HEH (U+0647), but with two different types.

<char cp="0647" >
<var cp="0629" not-when="arabic-final" type="blocked" />
<var cp="0629" when="arabic-final" type="allocatable" />
</char>

The intent is that a label that uses U+0629 instead of U+0647 in a
final position should be considered essentially the same label and,
therefore, allocatable to the same entity, while the same
substitution in a non-final position leads to labels that are
different, but considered confusable, so that either one, but not
both, should be delegatable.

For symmetry, the reverse mappings must exist and must agree in their
"when" or "not-when" attributes. However, symmetry does not apply to
the other attributes. For example, these are potential reverse
mappings for the above:

<char cp="0629" >
<var cp="0647" not-when="arabic-final" type="allocatable" />
<var cp="0647" when="arabic-final" type="allocatable" />
</char>

Here, both variants have the same "type" attribute. While it is

tempting to recognize that, in this instance, the "when" and

"not-when" attributes are complementary; therefore, between them they
cover every single possible context, it is strongly RECOMMENDED to
use the format shown in the example that makes the symmetry easily
verifiable by parsers and tools. (The same applies to entries

created for transitivity.)

Davies & Freytag Standards Track [Page 21]



RFC 7940 Label Generation Rulesets in XML August 2016

Arabic is an example of a script for which such conditional variants
have been implemented based on the joining contexts for Arabic code
points. The mechanism defined here supports other forms of
conditional variants that may be required by other scripts.

5.4. Annotations

Two attributes, the "ref" and "comment" attributes, can be used to
annotate individual elements in the LGR. They are ignored in
machine-processing of the LGR. The "ref" attribute is intended for
formal annotations and the "comment" attribute for free-form
annotations. The latter can be applied more widely.

5.4.1. The "ref" Attribute

Reference information MAY optionally be specified by a "ref"
attribute consisting of a space-delimited sequence of reference
identifiers (see Section 4.3.8).

<char cp="5220" ref="0">
<var cp="5220" ref="5"/>
<var cp="522A" ref="2 3"/>
</char>

This facility is typically used to give source information for code
points or variant relations. This information is ignored when
machine-processing an LGR. If applied to a range, the "ref"
attribute applies to every code point in the range. All reference
identifiers MUST be from the set declared in the "references” element
(see Section 4.3.8). Itis an error to repeat a reference identifier

in the same "ref" attribute. Itis RECOMMENDED that identifiers be
listed in ascending order.

In addition to "char", "range”, and "var" elements in the "data"
section, a "ref" attribute may be present for a number of element
types contained in the "rules" element as described below: actions
and literals ("char" inside a rule), as well as for definitions of

rules and classes, but not for references to named character classes
or rules using the "by-ref" attribute defined below. (The use of the
"by-ref" and "ref" attributes is mutually exclusive.) None of the
elements in the metadata take a "ref" attribute; to provide

additional information, use the "description" element instead.

Davies & Freytag Standards Track [Page 22]



RFC 7940 Label Generation Rulesets in XML August 2016

5.4.2. The "comment" Attribute
Any "char", "range", or "variant" element in the "data" section may
contain an OPTIONAL "comment" attribute. The contents of a "comment"
attribute are free-form plain text. Comments are ignored in machine
processing of the table. "comment" attributes MAY also be placed on
all elements in the "rules" section of the document, such as actions
and match operators, as well as definitions of classes and rules, but
not on child elements of the "class" element. Finally, in the
metadata, only the "version" and "reference" elements MAY have
"comment” attributes (to match the syntax in [RFC3743]).

5.5. Code Point Tagging

Typically, LGRs are used to explicitly designate allowable code
points, where any label that contains a code point not explicitly
listed in the LGR is considered an ineligible label according to the
ruleset.

For more-complex registry rules, there may be a need to discern one
or more subsets of code points. This can be accomplished by applying
an OPTIONAL "tag" attribute to "char" or "range" elements that are
child elements of the "data" element. By collecting code points that
share the same tag value, character classes may be defined (see
Section 6.2.2) that can then be used in parameterized context or
whole label rules (see Section 6.3.2).

Each "tag" attribute MAY contain multiple values separated by

white space. A tag value is an identifier that may also include

certain punctuation marks, such as a colon. Formally, it MUST
correspond to the XML 1.0 Nmtoken (Name token) production (see [XML]
Section 2.3). lItis an error to duplicate a value within the same

"tag" attribute. A "tag" attribute for a "range" element applies to

all code points in the range. Because code point sequences are not
proper members of a set of code points, a "tag" attribute MUST NOT be
present in a "char" element defining a code point sequence.

6. Whole Label and Context Evaluation
6.1. Basic Concepts

The "rules" element contains the specification of both context-based
and whole label rules. Collectively, these are known as Whole Label
Evaluation (WLE) rules (Section 6.3). The "rules" element also
contains the character classes (Section 6.2) that they depend on, and
any actions (Section 7) that assign dispositions to labels based on
rules or variant mappings.

Davies & Freytag Standards Track [Page 23]



RFC 7940 Label Generation Rulesets in XML August 2016

A whole label rule is applied to the whole label. It is used to
validate both original labels and any variant labels computed
from them.

A rule implementing a conditional context as discussed in Section 5.2
does not necessarily apply to the whole label but may be specific to
the context around a single code point or code point sequence.
Certain code points in a label sometimes need to satisfy
context-based rules -- for example, for the label to be considered
valid, or to satisfy the context for a variant mapping (see the
description of the "when" attribute in Section 6.4).

For example, if a rule is referenced in the "when" attribute of a
variant mapping, it is used to describe the conditional context under
which the particular variant mapping is defined to exist.

Each rule is defined in a "rule” element. A rule may contain the
following as child elements:

o literal code points or code point sequences

o character classes, which define sets of code points to be used for
context comparisons

0 context operators, which define when character classes and
literals may appear

0 nested rules, whether defined in place or invoked by reference

Collectively, these are called "match operators" and are listed in
Section 6.3.2. An LGR containing rules or match operators that

1. are incorrectly defined or nested,
2. have invalid attributes, or
3. have invalid or undefined attribute values

MUST be rejected. Note that not all of the constraints defined here
are validated by the schema.

Davies & Freytag Standards Track [Page 24]



RFC 7940 Label Generation Rulesets in XML August 2016

6.2. Character Classes

Character classes are sets of characters that often share a
particular property. While they function like sets in every way,
even supporting the usual set operators, they are called "character
classes" here in a nod to the use of that term in regular expression
syntax. (This also avoids confusion with the term "character set" in
the sense of character encoding.)

Character classes can be specified in several ways:

o by defining the class via matching a tag in the code point data.
All characters with the same "tag" attribute are part of the same
class;

o by referencing a value of one of the Unicode character properties
defined in the Unicode Character Database;

o by explicitly listing all the code points in the class; or

o by defining the class as a set combination of any number of other
classes.

6.2.1. Declaring and Invoking Named Classes

A character class has an OPTIONAL "name" attribute consisting of a
single identifier not containing spaces. All names for classes must

be unique. If the "name" attribute is omitted, the class is

anonymous and exists only inside the rule or combined class where it
is defined. A named character class is defined independently and can
be referenced by name from within any rules or as part of other
character class definitions.

<class name="example" comment="an example class definition">
0061 4E00
</class>

<rule>
<class by-ref="example" />
</rule>

An empty "class" element with a "by-ref" attribute is a reference to

an existing named class. The "by-ref" attribute MUST NOT be used in
the same "class" element with any of these attributes: "name”,
"from-tag”, "property", or "ref". The "name" attribute MUST be
present if and only if the class is a direct child element of the

"rules” element. It is an error to reference a named class for which
the definition has not been seen.

Davies & Freytag Standards Track [Page 25]



RFC 7940 Label Generation Rulesets in XML August 2016

6.2.2. Tag-Based Classes

The "char" or "range" elements that are child elements of the "data"
element MAY contain a "tag" attribute that consists of one or more
space-separated tag values; for example:

<char cp="0061" tag="letter lower"/>
<char cp="4EQ00" tag="letter"/>

This defines two tags for use with code point U+0061, the tag
"letter” and the tag "lower". Use

<class name="letter" from-tag="letter" />
<class name="lower" from-tag="lower" />

to define two named character classes, "letter" and "lower",
containing all code points with the respective tags, the first with

0061 and 4E00 as elements, and the latter with 0061 but not 4E00 as
an element. The "name" attribute may be omitted for an anonymous
in-place definition of a nested, tag-based class.

Tag values are typically identifiers, with the addition of a few

punctuation symbols, such as a colon. Formally, they MUST correspond
to the XML 1.0 Nmtoken production. While a "tag" attribute may

contain a list of tag values, the "from-tag" attribute MUST always

contain a single tag value.

If the document contains no "char" or "range" elements with a
corresponding tag, the character class represents the empty set.

This is valid, to allow a common "rules" element to be shared across
files. However, itis RECOMMENDED that implementations allow for a
warning to ensure that referring to an undefined tag in this way is
intentional.

6.2.3. Unicode Property-Based Classes
A class is defined in terms of Unicode properties by giving the
Unicode property alias and the property value or property value
alias, separated by a colon.
<class name="virama" property="ccc:9" />
The example above selects all code points for which the Unicode

Canonical Combining Class (ccc) value is 9. This value of the ccc is
assigned to all code points that encode viramas.

Davies & Freytag Standards Track [Page 26]



RFC 7940 Label Generation Rulesets in XML August 2016

Unicode property values MUST be designated via a composite of the
attribute name and value as defined for the property value in

[UAX42], separated by a colon. Loose matching of property values and
names as described in [UAX44] is not appropriate for an XML schema
and is not supported; it is likewise not supported in the XML
representation [UAX42] of the Unicode Character Database itself.

A property-based class MAY be anonymous, or, when defined as an
immediate child of the "rules" element, it MAY be named to relate a
formal property definition to its usage, such as the use of the value

9 for ccc to designate a virama (or halant) in various scripts.

Unicode properties may, in principle, change between versions of the
Unicode Standard. However, the values assigned for a given version
are fixed. If Unicode properties are used, a Unicode version MUST be
declared in the "unicode-version" element in the header. (Note: Some
Unicode properties are by definition stable across versions and do

not change once assigned; see [Unicode-Stability].)

All implementations processing LGR files SHOULD provide support for
the following minimal set of Unicode properties:

o General Category (gc)

0 Script (sc)

0 Canonical Combining Class (ccc)

o Bidi Class (bc)

0 Arabic Joining Type (jt)

o Indic Syllabic Category (InSC)

o Deprecated (Dep)

The short name for each property is given in parentheses.

If a program that is using an LGR to determine the validity of a

label encounters a property that it does not support, it MUST abort
with an error.

Davies & Freytag Standards Track [Page 27]



RFC 7940 Label Generation Rulesets in XML August 2016

6.2.4. Explicitly Declared Classes

A class of code points may also be declared by listing all code
points that are members of the class. This is useful when tagging
cannot be used because code points are not listed individually as
part of the eligible set of code points for the given LGR -- for
example, because they only occur in code point sequences.

To define a class in terms of an explicit list of code points, use a
space-separated list of hexadecimal code point values:

<class name="abcd">0061 0062 0063 0064</class>

This defines a class named "abcd" containing the code points for
characters "a", "b", "c", and "d". The ordering of the code points
is not material, but it is RECOMMENDED to list them in ascending
order; not doing so makes it unnecessarily difficult for users to
detect errors such as duplicates or to compare and review these
classes against other specifications.

In a class definition, ranges of code points are represented by a
hexadecimal start and end value separated by a hyphen. The following
declaration is equivalent to the preceding:

<class name="abcd">0061-0064</class>
Range and code point declarations can be freely intermixed:

<class name="abcd">0061 0062-0063 0064</class>
The contents of a class differ from a repertoire in that the latter
MAY contain sequences as elements, while the former MUST NOT.

Instead, they closely resemble character classes as found in regular
expressions.

Davies & Freytag Standards Track [Page 28]



RFC 7940 Label Generation Rulesets in XML August 2016

6.2.5. Combined Classes

Classes may be combined using operators for set complement, union,
intersection, difference (elements of the first class that are not in

the second), and symmetric difference (elements in either class but
not both). Because classes fundamentally function like sets, the
union of several character classes is itself a class, for example.

+ + +
| Logical Operation | Example |

4
T

| Complement | <complement><class by-ref="xxx"></complement>|
+ + +
| Union | <union> |

| <class by-ref="class-1"/> |

| <class by-ref="class-2"/> |

| <class by-ref="class-3"/> |

| </union> |

+ +

Intersection | <intersection> |

| <class by-ref="class-1"/> |

| <class by-ref="class-2"/> |

| </intersection> |

+ +

Difference | <difference> |

| <class by-ref="class-1"/> |

| <class by-ref="class-2"/> |

| </difference> |
Symmetric | <symmetric-difference> [
Difference | <class by-ref="class-1"/> |

| <class by-ref="class-2"/> |

| </symmetric-difference>

4 ———— ————

Set Operators

The elements from this table may be arbitrarily nested inside each
other, subject to the following restriction: a "complement” element
MUST contain precisely one "class" or one of the operator elements,
while an "intersection”, "symmetric-difference”, or "difference”
element MUST contain precisely two, and a "union" element MUST

contain two or more of these elements.

Davies & Freytag Standards Track [Page 29]



RFC 7940 Label Generation Rulesets in XML August 2016

An anonymous combined class can be defined directly inside a rule or
any of the match operator elements that allow child elements (see
Section 6.3.2) by using the set combination as the outer element.

<rule>
<union>
<class by-ref="xxx"/>
<class by-ref="yyy"/>
</union>
</rule>

The example shows the definition of an anonymous combined class that
represents the union of classes "xxx" and "yyy". There is no need to
wrap this union inside another "class" element, and, in fact, set
combination elements MUST NOT be nested inside a "class" element.

Lastly, to create a named combined class that can be referenced in
other classes or in rules as <class by-ref="xxxyyy"/>, add a "name"

attribute to the set combination element -- for example,

<union name="xxxyyy" /> -- and place it at the top level immediately
below the "rules” element (see Section 6.2.1).

<rules>
<union name="xxxyyy">
<class by-ref="xxx"/>
<class by-ref="yyy"/>
</union>

</rules>

Because (as for ordinary sets) a combination of classes is itself a
class, no matter by what combinations of set operators a combined
class is created, a reference to it always uses the "class" element
as described in Section 6.2.1. That is, a named class is always
referenced via an empty "class" element using the "by-ref" attribute
containing the name of the class to be referenced.

6.3. Whole Label and Context Rules
Each rule comprises a series of matching operators that must be
satisfied in order to determine whether a label meets a given

condition. Rules may reference other rules or character classes
defined elsewhere in the table.

Davies & Freytag Standards Track [Page 30]



RFC 7940 Label Generation Rulesets in XML August 2016

6.3.1. The "rule" Element

A matching rule is defined by a "rule" element, the child elements of
which are one of the match operators from Section 6.3.2. In
evaluating a rule, each child element is matched in order. "rule”
elements MAY be nested inside each other and inside certain match
operators.

A simple rule to match a label where all characters are members of
some class called "preferred-codepoint":

<rule name="preferred-label">
<start />
<class by-ref="preferred-codepoint" count="1+"/>
<end />

</rule>

Rules are paired with explicit and implied actions, triggering these
actions when a rule matches a label. For example, a simple explicit
action for the rule shown above would be:

<action disp="allocatable" match="preferred-label" />

The rule in this example would have the effect of setting the policy
disposition for a label made up entirely of preferred code points to
"allocatable". Explicit actions are further discussed in Section 7
and implicit actions in Section 7.5. Another use of rules is in
defining conditional contexts for code points and variants as
discussed in Sections 5.2 and 5.3.5.

A rule that is an immediate child element of the "rules" element MUST
be named using a "name" attribute containing a single identifier

string with no spaces. A named rule may be incorporated into another
rule by reference and may also be referenced by an "action" element,

"when" attribute, or "not-when" attribute. If the "name" attribute

is omitted, the rule is anonymous and MUST be nested inside another
rule or match operator.

Davies & Freytag Standards Track [Page 31]



RFC 7940 Label Generation Rulesets in XML August 2016

6.3.2. The Match Operators

The child elements of a rule are a series of match operators, which
are listed here by type and name and with a basic example or two.

+ + + +
| Type | Operator | Examples |
+ + + +
| logical |any | <any /> |
| + + +
| | choice | <choice>
| | | <rule by-ref="alternativel"/> |
| | | <rule by-ref="alternative2"/> |
| | | </choice> |
+ + +
| positional | start | <start /> |
| + + +
| | end | <end /> |
+ + +
| literal | char | <char cp="0061 0062 0063" /> |
+ + +
| set | class | <class by-ref="class1" /> |
| | | <class>0061 0064-0065</class> |
+ + +
| group | rule | <rule by-ref="rulel" /> |
| <rule><any /></rule> |
+ + +
| contextual | anchor | <anchor /> |
| + + +
| | look-ahead | <look-ahead><any /></look-ahead> |
| + + +
| | look-behind | <look-behind><any /></look-behind> |
+ + +

Match Operators

Any element defining an anonymous class can be used as a match
operator, including any of the set combination operators (see
Section 6.2.5) as well as references to named classes.

All match operators shown as empty elements in the Examples column of
the table above do not support child elements of their own;

otherwise, match operators MAY be nested. In particular, anonymous
"rule" elements can be used for grouping.

Davies & Freytag Standards Track [Page 32]



RFC 7940 Label Generation Rulesets in XML August 2016

6.3.3. The "count" Attribute

The OPTIONAL "count" attribute, when present, specifies the minimally
required or maximal permitted number of times a match operator is
used to match input. If the "count” attribute is

n the match operator matches the input exactly n times, where n is
1 or greater.

n+ the match operator matches the input at least n times, where n
is O or greater.

n:m the match operator matches the input at least n times, where n
is O or greater, but matches the input up to m times in total,
where m > n. If m=n and n > 0, the match operator matches the
input exactly n times.

If there is no "count" attribute, the match operator matches the
input exactly once.

In matching, greedy evaluation is used in the sense defined for
regular expressions: beyond the required number or times, the input
is matched as many times as possible, but not so often as to prevent
a match of the remainder of the rule.

A "count" attribute MUST NOT be applied to any element that contains
a "name" attribute but MAY be applied to operators such as "class"

that declare anonymous classes (including combined classes) or invoke
any predefined classes by reference. The "count" attribute MUST NOT
be applied to any "class" element, or element defining a combined
class, when it is nested inside a combined class.

A "count" attribute MUST NOT be applied to match operators of type
"start”, "end", "anchor", "look-ahead", or "look-behind" or to any
operators, such as "rule” or "choice", that contain a nested instance
of them. This limitation applies recursively and irrespective of
whether a "rule" element containing these nested instances is

declared in place or used by reference.

However, the "count" attribute MAY be applied to any other instances
of either an anonymous "rule" element or a "choice" element,
including those instances nested inside other match operators. It
MAY also be applied to the elements "any" and "char", when used as
match operators.

Davies & Freytag Standards Track [Page 33]



RFC 7940 Label Generation Rulesets in XML August 2016

6.3.4. The "name" and "by-ref" Attributes

Like classes (see Section 6.2.1), rules declared as immediate child
elements of the "rules"” element MUST be named using a unique "name'
attribute, and all other instances MUST NOT be named. Anonymous
rules and classes or references to named rules and classes can be
nested inside other match operators by reference.

To reference a named rule or class inside a rule or match operator,

use a "rule" or "class" element with an OPTIONAL "by-ref" attribute
containing the name of the referenced element. It is an error to
reference a rule or class for which the complete definition has not

been seen. In other words, it is explicitly not possible to define
recursive rules or class definitions. The "by-ref" attribute

MUST NOT appear in the same element as the "name" attribute or in an
element that has any child elements.

The example shows several named classes and a named rule referencing
some of them by name.

<class name="letter" property="gc:L"/>
<class name="combining-mark" property="gc:M"/>
<class name="digit" property="gc:Nd" />
<rule name="letter-grapheme">

<class by-ref="letter" count="1+"/>

<class by-ref="combining-mark" count="0+"/>
</rule>

6.3.5. The "choice" Element

The "choice" element is used to represent a list of two or more
alternatives:

<rule name="Idh">
<choice count="1+">
<class by-ref="Iletter"/>
<class by-ref="digit"/>
<char cp="002D" comment="literal HYPHEN"/>
</choice>
</rule>

Each child element of a "choice" element represents one alternative.
The first matching alternative determines the match for the

"choice" element. To express a choice where an alternative itself
consists of a sequence of elements, the sequence must be wrapped in
an anonymous rule.

Davies & Freytag Standards Track [Page 34]



RFC 7940 Label Generation Rulesets in XML August 2016

6.3.6. Literal Code Point Sequences

A literal code point sequence matches a single code point or a
sequence. Itis defined by a "char" element, with the code point or
sequence to be matched given by the "cp" attribute. When used as a
literal, a "char" element MAY contain a "count” attribute in addition

to the "cp" attribute and OPTIONAL "comment" or "ref" attributes. No
other attributes or child elements are permitted.

6.3.7. The "any" Element

The "any" element is an empty element that matches any single code
point. It MAY have a "count" attribute. For an example, see
Section 6.3.9.

Unlike a literal, the "any" element MUST NOT have a "ref" attribute.
6.3.8. The "start" and "end" Elements

To match the beginning or end of a label, use the "start" or "end"
element. An empty label would match this rule:

<rule name="empty-label">
<start/>
<end/>

</rule>

Conceptually, whole label rules evaluate the label as a whole, but in
practice, many rules do not actually need to be specified to match
the entire label. For example, to express a requirement of not
starting a label with a digit, a rule needs to describe only the

initial part of a label.

This example uses the previously defined rules, together with "start"
and "end" elements, to define a rule that requires that an entire
label be well-formed. For this example, that means that it must
start with a letter and that it contains no leading digits or

combining marks nor combining marks placed on digits.

<rule name="leading-letter" >
<start />
<rule by-ref="letter-grapheme" count="1"/>
<choice count="0+">
<rule by-ref="letter-grapheme" count="0+"/>
<class by-ref="digit" count="0+"/>
</choice>
<end />
</rule>

Davies & Freytag Standards Track [Page 35]



RFC 7940 Label Generation Rulesets in XML August 2016

Each "start" or "end" element occurs at most once in a rule, except

if nested inside a "choice" element in such a way that in matching
each alternative at most one occurrence of each is encountered.
Otherwise, the result is an error, as is any case where a "start" or
"end" element is not encountered as the first or last element to be
matched, respectively, in matching a rule. "start" and "end"
elements are empty elements that do not have a "count" attribute or
any other attribute other than "comment". Itis an error for any
match operator enclosing a nested "start" or "end" element to have a
"count" attribute.

6.3.9. Example Context Rule from IDNA Specification

This is an example of the WLE rule from [RFC5892] forbidding the
mixture of the Arabic-Indic and extended Arabic-Indic digits in the
same label. Itis implemented as a whole label rule associated with
the code point ranges using the "not-when" attribute, which defines
an impermissible context. The example also demonstrates several
instances of the use of anonymous rules for grouping.

<data>
<range first-cp="0660" last-cp="0669" not-when="mixed-digits"
tag="arabic-indic-digits" />
<range first-cp="06F0" last-cp="06F9" not-when="mixed-digits"
tag="extended-arabic-indic-digits" />
</data>
<rules>
<rule name="mixed-digits">
<choice>
<rule>
<class from-tag="arabic-indic-digits"/>
<any count="0+"/>
<class from-tag="extended-arabic-indic-digits"/>
</rule>
<rule>
<class from-tag="extended-arabic-indic-digits"/>
<any count="0+"/>
<class from-tag="arabic-indic-digits"/>
</rule>
</choice>
</rule>
</rules>

As specified in the example, a label containing a code point from
either of the two digit ranges is invalid for any label matching the
"mixed-digits" rule, that is, any time that a code point from the

other range is also present. Note that invalidating the label is not

Davies & Freytag Standards Track [Page 36]



RFC 7940 Label Generation Rulesets in XML August 2016

the same as invalidating the definition of the "range" elements; in
particular, the definition of the tag values does not depend on the
"when" attribute.

6.4. Parameterized Context or When Rules

To recap: When a rule is intended to provide a context for evaluating
the validity of a code point or variant mapping, it is invoked by the
"when" or "not-when" attributes described in Section 5.2. For "char"
and "range" elements, an action implied by a context rule always has
a disposition of "invalid" whenever the rule given by the "when"
attribute is not matched (see Section 7.5). Conversely, a "not-when"
attribute results in a disposition of "invalid" whenever the rule is
matched. When a rule is used in this way, it is called a context or
"when" rule.

The example in the previous section shows a whole label rule used as
a context rule, essentially making the whole label the context. The
next sections describe several match operators that can be used to
provide a more specific specification of a context, allowing a
parameterized context rule. See Section 7 for an alternative method
of defining an invalid disposition for a label not matching a whole

label rule.

6.4.1. The "anchor" Element

Such parameterized context rules are rules that contain a special

placeholder represented by an "anchor" element. As each When Rule is

evaluated, if an "anchor" element is present, it is replaced by a
literal corresponding to the "cp" attribute of the element containing
the "when" (or "not-when") attribute. The match to the "anchor"
element must be at the same position in the label as the code point
or variant mapping triggering the When Rule.

For example, the Greek lower numeral sign is invalid if not
immediately preceding a character in the Greek script. This is most
naturally addressed with a parameterized When Rule using
"look-ahead":

<char cp="0375" when="preceding-greek"/>

<class name="greek-script" property="sc:Grek"/>
<rule name="preceding-greek">
<anchor/>
<look-ahead>
<class by-ref="greek-script"/>
</look-ahead>
</rule>

Davies & Freytag Standards Track [Page 37]



R