Internet Engineering Task Force (IETF) A. Amirante

Request for Comments: 7058 University of Napoli

Category: Informational T. Castaldi

ISSN: 2070-1721 L. Miniero
Meetecho

S P. Romano
University of Napoli
November 2013

Media Control Channel Framework (CFW) Call Flow Examples

Abstract

This document provides a list of typical Media Control Channel
Framework call flows. It aims at being a simple guide to the use of

the interface between Application Servers and MEDIACTRL-based Media
Servers, as well as a base reference document for both implementors
and protocol researchers.

Status of This Memo

This document is not an Internet Standards Track specification; it is
published for informational purposes.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7058.

Amirante, et al. Informational [Page 1]

RFC 7058 CFW Call Flow Examples November 2013

Copyright Notice

Copyright (¢) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Amirante, et al. Informational [Page 2]

RFC 7058 CFW Call Flow Examples November 2013

Table of Contents

1. Introduction ..., 4
A OL019)Y/=T o1 1 o] o £ 3 N 5
3. Terminologycooeeviiiiiiiiiiiiieeeeee e 5
4. A Practical Approachccocccvvviieeieeeee e, 6
4.1. State Diagramscccccvveeeereeeeeeee i 6
5. Control Channel Establishmentcccccivvennnnnn. 10
5.1. COMEDIA Negotiationccccovvveeeeiniieeeennnnnn 11
5.2. SYNC ..t 14
5.3. K-ALIVE ...t 15
5.4. Wrong Behaviorccccccevveeeieiiiiiciiiieee, 17
6. Use-Case Scenarios and Examplescccccccveeeviiiicnnnnen, 20
6.1. EChO TESt .o 27
6.1.1. Direct ECho TeStccoeeeeeeiiiiii 28
6.1.2. Echo Test Based on Recordingccceee.... 30
6.2. Phone Call ..., 39
6.2.1. Direct Connectionccccceevvivveeeeennne 42
6.2.2. Conference-Based Approachccoeeeee 44
6.2.3. Recording a Conversationcccoeeeueeens 51
6.3. CoNferencingccccovvcvveeeeiniiieee e 57
6.3.1. Simple Bridgingccccuveeeeieieeeeinninnns 62
6.3.2. Rich Conference Scenariocccccceeeevnnnes 66
6.3.3. Coaching Scenarioccccvvvvvveeeeenennn. 75
6.3.4. Sidebarsccccooviiiiiiii e 83
6.3.5. Floor Controlccccceevveeeeeiiiciiiinee, 93
6.4. Additional Scenariosccccccccevveiiciiiiiieenennn. 99
6.4.1. Voice Mailccccuvvviiiiiiiiiiiieneee. 100
6.4.2. Current TiMeceeeeviiiiiiiiiiiiieeeeenn, 107
6.4.3. DTMF-Driven Conference Manipulation 112
7. Media Resource Brokeringccccccvevveeeeeiieiccnnvnnnen. 126
7.1. Publishing Interfacecccccccovviiiiinniinnnnn, 127
7.2. Consumer Interfacecccccvveeeveeieeennniinns 136
7.2.1. Query Modeoccviiiiiiiiiieeeees 137
7.2.2. Inline-Aware Modeccccvviiieeeeieeennnn. 140
7.2.3. Inline-Unaware Modeccccceeeviiieenenns 155
7.3. Handling Media Dialogscccccccvvvereeeeeniiinnnns 157
7.3.1. Query and Inline-Aware Modec....... 157
7.3.2. Inline-Unaware Modeccoeeeeeeeeeeennn. 160
7.3.3. CFW Protocol Behaviorc....o.. 167
8. Security Considerationsccccueeeeieeeeerininiinns 170
9. Acknowledgmentscccccciiveieeeiee e, 180
10. Referencesoccvveveiiiiiieeee e 180
10.1. Normative Referencescccccvvveeveeeeeeeiinnnns 180
10.2. Informative Referencescccccvvveveeennen.n. 181

Amirante, et al. Informational [Page 3]

RFC 7058 CFW Call Flow Examples November 2013

1. Introduction

This document provides a list of typical MEDIACTRL Media Control
Channel Framework [RFC6230] call flows. The motivation for this
comes from our implementation experience with the framework and its
protocol. This drove us to write a simple guide to the use of the

several interfaces between Application Servers and MEDIACTRL-based
Media Servers, and a base reference document for other implementors
and protocol researchers.

Following this spirit, this document covers several aspects of the
interaction between Application Servers and Media Servers. However,
in the context of this document, the call flows almost always depict

the interaction between a single Application Server (which, for the
sake of conciseness, is called the AS from now on) and a single Media
Server (MS). In Section 7, some flows involving more entities by
means of a Media Resource Broker compliant with [RFC6917] are
presented. To help readers understand all the flows (as related to
both SIP dialogs and Media Control Channel Framework (CFW)
transactions), the domains hosting the AS and the MS in all the
scenarios are called 'as.example.com’ and 'ms.example.net’,
respectively, per [RFC2606]. The flows will often focus more on the
CFW [RFC6230] interaction, rather than on the other involved
protocols, e.g., SIP [RFC3261], the Session Description Protocol
(SDP) [RFC3264], or RTP [RFC3550].

In the next paragraphs, a brief overview of our implementation
approach is described, with particular focus on protocol-related
aspects. This involves state diagrams that depict both the client
side (the AS) and the server side (the MS). Of course, this section
is not at all to be considered a mandatory approach to the
implementation of the framework. It is only meant to help readers
understand how the framework works from a practical point of view.

Once done with these preliminary considerations, in the subsequent
sections real-life scenarios are addressed. In this context, first

of all, the establishment of the Control Channel is dealt with.

After that, some use-case scenarios involving the most typical
multimedia applications are depicted and described.

It is worth pointing out that this document is not meant in any way

to be a self-contained guide to implementing a MEDIACTRL-compliant
framework. The specifications are a mandatory read for all
implementors, especially because this document follows their
guidelines but does not delve into the details of every aspect of the
protocol.

Amirante, et al. Informational [Page 4]

RFC 7058 CFW Call Flow Examples November 2013

2. Conventions

Note that due to RFC formatting conventions, SIP/SDP and CFW lines
whose content exceeds 72 characters are split across lines. This

line folding is marked by a backslash at the end of the first line.

This backslash, the preceding whitespace, the following CRLF, and the
whitespace beginning the next line would not appear in the actual
protocol contents. Note also that the indentation of the XML content

is only provided for readability. Actual messages will follow strict

XML syntax, which allows, but does not require, indentation. Due to
the same limit of 72 characters per line, this document also

sometimes splits the content of XML elements across lines. Please be
aware that when this happens, no whitespace is actually meant to be
at either the beginning or the end of the element content.

Note also that a few diagrams show arrows that go from a network
entity to itself. It's worth pointing out that such arrows do not
represent any transaction message but are rather meant as an
indication to the reader that the involved network entity made a
decision, within its application logic, according to the input it
previously received.

3. Terminology

This document uses the same terminology as [RFC6230], [RFC6231],
[RFC6505], and [RFC6917]. The following terms are only a
summarization of the terms most commonly used in this context and are
mostly derived from the terminology used in the related documents:

COMEDIA: connection-oriented media (i.e., TCP and Transport Layer
Security (TLS)). Also used to signify the support in SDP for
connection-oriented media and the RFCs that define that support
([RFC4145] and [RFC4572]).

Application Server: an entity that requests media processing and
manipulation from a Media Server; typical examples are Back-to-
Back User Agents (B2BUAs) and endpoints requesting manipulation of
a third party’s media stream.

Media Server: an entity that performs a service, such as media
processing, on behalf of an Application Server; typical provided
functions are mixing, announcement, tone detection and generation,
and play and record services.

Control Channel: a reliable connection between an Application Server
and a Media Server that is used to exchange framework messages.

Amirante, et al. Informational [Page 5]

RFC 7058 CFW Call Flow Examples November 2013

VCR controls: runtime control of aspects of an audio playback like
speed and volume, via dual-tone multi-frequency (DTMF) signals
sent by the user, in a manner that resembles the functions of a
VCR (video cassette recorder) controller.

4. A Practical Approach

In this document, we embrace an engineering approach to the
description of a number of interesting scenarios that can be realized
through the careful orchestration of the Media Control Channel
Framework entities, namely the Application Server and the Media
Server. We will demonstrate, through detailed call flows, how a
variegated bouquet of services (ranging from very simple scenarios to
much more complicated examples) can be implemented with the
functionality currently offered, within the main MEDIACTRL framework,
by the Control Packages that have been made available to date. The
document aims at being a useful guide for those interested in
investigating the inter-operation among MEDIACTRL components, as well
as being a base reference document for application developers willing
to build advanced services on top of the base infrastructure made
available by the framework.

4.1. State Diagrams

In this section, we present an "informal" view of the main MEDIACTRL
protocol interactions, in the form of state diagrams. Each diagram

is indeed a classical representation of a Mealy automaton, comprising

a number of possible protocol states, indicated with rectangular

boxes. Transitions between states are indicated through edges, with
each edge labeled with a slash-separated pair representing a specific
input together with the associated output (a dash in the output

position means that, for that particular input, no output is

generated from the automaton). Some of the inputs are associated

with MEDIACTRL protocol messages arriving at a MEDIACTRL component
while it is in a certain state. This is the case for'CONTROL’,

'REPORT’ (in its various "flavors" -- pending, terminate, etc.),

'200’, '202’, and 'Error’ (error messages correspond to specific

numeric codes). Further inputs represent triggers arriving at the
MEDIACTRL automaton from the upper layer, namely the Application
Programming Interface used by programmers while implementing
MEDIACTRL-enabled services. Such inputs have been indicated with the
term AP/’ followed by the message that the APl itself is triggering

(as an example, 'API terminate’ is a request to send a 'REPORT’
message with a status of 'terminate’ to the peering component).

Amirante, et al. Informational [Page 6]

RFC 7058 CFW Call Flow Examples November 2013

Four diagrams are provided. Two of them (Figures 1 and 2) describe
normal operation of the framework. Figure 3 contains two diagrams
describing asynchronous event notifications. Figure 1 embraces the
MS perspective, whereas Figure 2 shows the AS side. The upper part
of Figure 3 shows how events are generated, on the MS side, by
issuing a CONTROL message addressed to the AS; events are
acknowledged by the AS through standard 200 responses. Hence, the
behavior of the AS, which mirrors that of the MS, is depicted in the
lower part of the figure.

Coming back to Figure 1, the diagram shows that the MS activates upon
reception of CONTROL messages coming from the AS. The CONTROL
messages instruct the MS regarding the execution of a specific
command that belongs to one of the available Control Packages. The
execution of the received command can either be quick or require some
time. In the former case, right after completing its operation, the

MS sends back to the AS a 200 message, which basically acknowledges
correct termination of the invoked task. In the latter case, the MS

first sends back an interlocutory 202 message containing a 'Timeout’
value, which lets it enter a different state ("202’ sent). While in

the new state, the MS keeps on performing the invoked task. If the

task does not complete in the provided timeout, the server will

update the AS on the other side of the Control Channel by

periodically issuing 'REPORT update’ messages; each such message has
to be acknowledged by the AS (through a '200’ response). Eventually,
when the MS is done with the required service, it sends to the AS a
'REPORT terminate’ message. The transaction is concluded when the AS
acknowledges receipt of the message. It is worth pointing out that

the MS may send a 202 response after it determines that the request
does not contain any errors that cannot be reported in a later REPORT
terminate request instead. After the MS sends a 202 response, any
error that it (or the API) finds in the request is reported in the

final REPORT terminate request. Again, the behavior of the AS, as
depicted in Figure 2, mirrors the above-described actions undertaken

at the MS side. The figures also show the cases in which

transactions cannot be successfully completed due to abnormal
conditions; such conditions always trigger the creation and

transmission of a specific 'Error’ message that, as mentioned

previously, is reported as a numeric error code.

Amirante, et al. Informational [Page 7]

RFC 7058 CFW Call Flow Examples November 2013

| Waiting for | v
| last 200 |< + R +

—_— >

| API terminate/ API terminate/ |
| REPORT terminate REPORT terminate |
| |

S —— + |

| 'update’ confirmed |------ + API update/ |

+ + REPORT update |
|

n | API update/

| | REPORT update [
I

I

Figure 1: Media Server CFW State Diagram

Amirante, et al. Informational [Page 8]

RFC 7058 CFW Call Flow Examples November 2013

oo + 202/- - +
+-->| CONTROL sent |---------- >| 202 received |
[+ S R +
N
APl CONTROL/ | | 200/- | ||
send CONTROL | | | |
| | | Error/ |]
o + | | Error |]
| Idle/terminate’ |[<-+ | ||
+ +< + | |
N N | |
| | REPORT 'terminate’/ | |
| | send 200 | |
| + + | REPORT 'update’/
| | send 200
| REPORT ’'terminate’/ |
| send 200 |
| S RR— + |
o | 'update ’ [<-------------- +
R +
N

| | REPORT 'update’/
+o-e- + send 200

Figure 2: Application Server CFW State Diagram

Amirante, et al. Informational [Page 9]

RFC 7058 CFW Call Flow Examples November 2013

S IRUR——— +
+-->| CONTROL sent |
|+ +
.

API CONTROL/ | | 200/-

send CONTROL | |
I |

T +

| Idle/terminate’ |<----+

T +

e + CONTROL/- +----mmmmmmmmmnee +
| Idle/'terminate’ |------------ >| CONTROL received |
o + S +

(Application Server perspective)
Figure 3: Event Notifications
5. Control Channel Establishment

As specified in [RFC6230], the preliminary step to any interaction
between an AS and an MS is the establishment of a Control Channel
between the two. As explained in the next subsection, this is
accomplished by means of a connection-oriented media (COMEDIA)
[RFC4145] [RFC4572] negotiation. This negotiation allows a reliable
connection to be created between the AS and the MS. It is here that
the AS and the MS agree on the transport-level protocol to use (TCP /
Stream Control Transmission Protocol (SCTP)) and whether any
application-level security is needed or not (e.g., TLS). For the

sake of simplicity, we assume that an unencrypted TCP connection is
negotiated between the two involved entities. Once they have
connected, a SYNC message sent by the AS to the MS consolidates the
Control Channel. An example of how a keep-alive message is triggered
is also presented in the following paragraphs. For the sake of
completeness, this section also includes a couple of common mistakes
that can occur when dealing with the Control Channel establishment.

Amirante, et al. Informational [Page 10]

RFC 7058 CFW Call Flow Examples November 2013

AS MS

I I

| INVITE (COMEDIA) |

I >|

| 100 (Trying) |

|<

| 200 OK (COMEDIA) |

|< I

| ACK |

I >|

I I

I >
| TCP CONNECT (CTRL CHANNEL) |

I >|
I

I
| SYNC (Dialog-ID, etc.) |
[++++++++t bttt bbb S>>
I |-+
| | | Check SYNC
| |[<-+
| 200 OK |
[<<t+++++ttttt bbb bbb
I

Figure 4: Control Channel Establishment
5.1. COMEDIA Negotiation

As a first step, the AS and the MS establish a Control SIP dialog.
This is usually originated by the AS itself. The AS generates a SIP
INVITE message containing in its SDP body information about the TCP
connection it wants to establish with the MS. In the provided
example (see Figure 5 and the attached call flow), the AS wants to
actively open a new TCP connection, which on its side will be bound
to port 5757. If the request is fine, the MS answers by
communicating to the AS the transport address to connect to in order
to establish the TCP connection. In the provided example, the MS
will listen on port 7575. Once this negotiation is over, the AS can
effectively connect to the MS.

The negotiation includes additional attributes. The 'cfw-id’

attribute is the most important, since it specifies the Dialog-ID,
which in turn will be subsequently referred to by both the AS and the
MS as specified in [RFC6230].

Amirante, et al. Informational [Page 11]

RFC 7058 CFW Call Flow Examples November 2013

AS MS

I 1. INVITE (COME[IIA) |
I 2.100 (Trying>)I|

I< 3. 200 OK (COMEDIA) |
I<4. ACK | |

I >|

I I

| TCP CONNECT (CTRL CHANNEL) |
I
I

>|

>|

Figure 5: COMEDIA Negotiation: Sequence Diagram

1. AS -> MS (SIP INVITE)

INVITE sip:MediaServer@ms.example.net:5060 SIP/2.0

Via: SIP/2.0/UDP 203.0.113.1:5060;\
branch=z9hG4bK-d8754z-9b07¢c8201c3aa510-1---d8754z-;rport=5060

Max-Forwards: 70

Contact: <sip:ApplicationServer@203.0.113.1:5060>

To: <sip:MediaServer@ms.example.net:5060>

From: <sip:ApplicationServer@as.example.com:5060>;tag=4354ec63

Call-ID: MDk2YTk1MDU3YmVkZjgzYTQwWYmJINJESNTA4ZDQ1OGY.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, REGISTER

Content-Type: application/sdp

Content-Length: 203

v=0

o=Iminiero 2890844526 2890842807 IN IP4 as.example.com
s=MediaCtrl

c=IN IP4 as.example.com

t=00

m=application 5757 TCP cfw

a=connection:new

a=setup:active

a=cfw-id:5feb6486792a

Amirante, et al. Informational [Page 12]

RFC 7058 CFW Call Flow Examples November 2013

2. AS <- MS (SIP 100 Trying)

SIP/2.0 100 Trying

Via: SIP/2.0/UDP 203.0.113.1:5060; \
branch=z9hG4bK-d8754z-9b07¢c8201c3aa510-1---d8754z-;rport=5060

To: <sip:MediaServer@ms.example.net:5060>;tag=499a5b74

From: <sip:ApplicationServer@as.example.com:5060>;tag=4354ec63

Call-ID: MDk2YTk1MDU3YmVKkZjgzYTQwWYmJINJESNTA4ZDQ1OGY.

CSeq: 1 INVITE

Content-Length: 0

3. AS <- MS (SIP 200 OK)

SIP/2.0 200 OK

Via: SIP/2.0/UDP 203.0.113.1:5060; \
branch=z9hG4bK-d8754z-9b07¢c8201c3aa510-1---d8754z-;rport=5060

Contact: <sip:MediaServer@ms.example.net:5060>

To: <sip:MediaServer@ms.example.net:5060>;tag=499a5b74

From: <sip:ApplicationServer@as.example.com:5060>;tag=4354ec63

Call-ID: MDk2YTk1MDU3YmVkZjgzYTQwWYmJINJESNTA4ZDQ10GY.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, REGISTER

Content-Type: application/sdp

Content-Length: 199

v=0

o=Iminiero 2890844526 2890842808 IN IP4 ms.example.net
s=MediaCtrl

c=IN IP4 ms.example.net

t=00

m=application 7575 TCP cfw

a=connection:new

a=setup:passive

a=cfw-id:5feb6486792a

Amirante, et al. Informational [Page 13]

RFC 7058 CFW Call Flow Examples November 2013

4. AS -> MS (SIP ACK)
ACK sip:MediaServer@ms.example.net:5060 SIP/2.0
Via: SIP/2.0/UDP 203.0.113.1:5060; \

branch=z9hG4bK-d8754z-22940f5f4589701b-1---d8754z-;rport

Max-Forwards: 70
Contact: <sip:ApplicationServer@203.0.113.1:5060>
To: <sip:MediaServer@ms.example.net:5060>;tag=499a5b74
From: <sip:ApplicationServer@as.example.com:5060>;tag=4354ec63
Call-ID: MDk2YTk1MDU3YmVkZjgzYTQwWYmJINJESNTA4ZDQ10GY.
CSeq: 1 ACK
Content-Length: 0

5.2. SYNC

Once the AS and the MS have successfully established a TCP
connection, an additional step is needed before the Control Channel
can be used. In fact, as seen in the previous subsection, the first
interaction between the AS and the MS happens by means of a SIP
dialog, which in turn allows the creation of the TCP connection.

This introduces the need for a proper correlation between the above-
mentioned entities (SIP dialog and TCP connection), so that the MS
can be sure that the connection came from the AS that requested it.
This is accomplished by means of a dedicated framework message called
a SYNC message. This SYNC message uses a unique identifier called
the Dialog-ID to validate the Control Channel. This identifier, as
introduced previously, is meant to be globally unique and as such is
properly generated by the caller (the AS in the call flow) and added

as an SDP media attribute (cfw-id) to the COMEDIA negotiation in
order to make both entities aware of its value:

a=cfw-id:5feb6486792a
NANNNNNNNNNNN

It also offers an additional negotiation mechanism. In fact, the AS
uses the SYNC to not only properly correlate, as explained before,
but also negotiate with the MS the Control Packages in which it is
interested, as well as agree on a 'Keep-Alive’ timer needed by both
the AS and the MS so that they will know if problems on the
connection occur. In the provided example (see Figure 6 and the
related call flow), the AS sends a SYNC with a Dialog-ID constructed
as needed (using the 'cfw-id’ attribute from the SIP dialog) and
requests access to two Control Packages: specifically, the
Interactive Voice Response (IVR) package and the Mixer package. The
AS also instructs the MS that a 100-second timeout is to be used for
keep-alive messages. The MS validates the request by matching the
received Dialog-ID with the SIP dialog values, and, assuming that it
supports the Control Packages the AS requested access to (and for the
sake of this document we assume that it does), it answers with a

Amirante, et al. Informational [Page 14]

RFC 7058 CFW Call Flow Examples November 2013

200 message. Additionally, the MS provides the AS with a list of
other unrequested packages it supports (in this case just a dummy
package providing testing functionality).

AS MS

I I

| 1. SYNC (Dialog-ID, etc.) |

R e > |
I |-+

| | | Check SYNC

| |[<-+

| 2.200 OK |
|<<H++++++tttt bbb

Figure 6: SYNC: Sequence Diagram

1. AS -> MS (CFW SYNC)

CFW 6e5e86f95609 SYNC
Dialog-ID: 5feb6486792a
Keep-Alive: 100

Packages: msc-ivr/1.0,msc-mixer/1.0

2. AS <- MS (CFW 200)
CFW 6e5e86f95609 200
Keep-Alive: 100
Packages: msc-ivr/1.0,msc-mixer/1.0
Supported: msc-example-pkg/1.0

The framework-level transaction identifier is obviously the same in

both the request and the response (6e5e86f95609), since the AS needs
to be able to match the response to the original request. At this

point, the Control Channel is finally established, and it can be used

by the AS to request services from the MS.

5.3. K-ALIVE
[RFC6230] provides a mechanism for implementing a keep-alive
functionality. Such a mechanism is especially useful whenever any

NAT or firewall sits in the path between an AS and an MS. In fact,
NATSs and firewalls may have timeout values for the TCP connections

Amirante, et al. Informational [Page 15]

RFC 7058 CFW Call Flow Examples November 2013

they handle, which means that if no traffic is detected on these
connections within a specific time they could be shut down. This

could be the case for a Control Channel established between an AS and
an MS but not used for some time. For this reason, [RFC6230]

specifies a dedicated framework message (K-ALIVE) that the AS and MS
can use in order to generate traffic on the TCP connection and keep

it alive.

As discussed in Section 5.2, the timeout value for the keep-alive
mechanism is set by the SYNC request. Specifically, in the example,
the AS specified a value of 100 seconds. In fact, the timeout value

is not actually negotiated between the AS and MS, as it is simply
specified by whichever endpoint takes the active role. The

100-second value is compliant with how NATs and firewalls are usually
implemented, since in most cases the timeout value they use before
shutting TCP connections down is around 2 minutes. Such a value has
a strong meaning within the context of this mechanism. In fact, it
means that the active role (the AS, in this case) has to send a

K-ALIVE message before those 100 seconds pass; otherwise, the passive
role (the MS) will tear down the connection, treating it like a

timeout. [RFC6230] suggests a more conservative approach towards
handling this timeout value, suggesting that the K-ALIVE message be
triggered before 80% of the negotiated time passes (80 seconds, in
this case). This is exactly the case presented in Figure 7.

AS MS

"80 s have +-| |
passed since | | |
last K-ALIVE +->| |
| 1. K-ALIVE |
[+++++++++ bbb
| |--+ Reset the local

| | | 'Keep-Alive’
| |<-+ timer
| 2.200 OK |
[<<++++++ttttt bbbt
Reset the +--| [
local | | |
'Keep-Alive' +->| |
timer | |

Figure 7: K-ALIVE: Sequence Diagram

Amirante, et al. Informational [Page 16]

RFC 7058 CFW Call Flow Examples November 2013

After the Control Channel has been established (COMEDIA+SYNC), both
the AS and the MS start local 'Keep-Alive’ timers mapped to the
negotiated keep-alive timeout value (100 seconds). When about

80 seconds have passed since the start of the timer (80% of

100 seconds), the AS sends a framework-level K-ALIVE message to the
MS. The message as seen in the protocol message dump is very
lightweight, since it only includes a single line with no additional

header. When the MS receives the K-ALIVE message, it resets its

local 'Keep-Alive’ timer and sends a 200 message back as

confirmation. As soon as the AS receives the 200 message, it resets

its local 'Keep-Alive’ timer as well, and the mechanism starts over
again.

The actual transaction steps are presented below.

1. AS -> MS (K-ALIVE)

CFW 518ba6047880 K-ALIVE

2. AS <- MS (CFW 200)

CFW 518ba6047880 200

If the timer expired in either the AS or the MS (i.e., the K-ALIVE or
the 200 arrived after the 100 seconds), the connection and the
associated SIP control dialog would be torn down by the entity
detecting the timeout, thus ending the interaction between the AS and
the MS.

5.4. Wrong Behavior

This section will briefly address some types of behavior that could
represent the most common mistakes when dealing with the
establishment of a Control Channel between an AS and an MS. These
scenarios are obviously of interest, since they result in the AS and

the MS being unable to interact with each other. Specifically, these
simple scenarios will be described:

1. an AS providing the MS with a wrong Dialog-ID in the initial
SYNC.

2. an AS sending a generic CONTROL message instead of SYNC as a
first transaction.

Amirante, et al. Informational [Page 17]

RFC 7058 CFW Call Flow Examples November 2013

The first scenario is depicted in Figure 8.

AS MS

I I

| 1. SYNC (Dialog-ID, etc.) |

e >
| |-+

| | | Check SYNC (wrong!)
| <+

| 2.481 |

|<<+++++++ttttt bbbt

I I
|<-XX- CLOSE TCP CONNECTION -XX-|

| I
| SIP BYE |
I >|

Figure 8: SYNC with Wrong Dialog-1D: Sequence Diagram

This scenario is similar to the scenario presented in Section 5.2,

but with a difference: instead of using the correct, expected

Dialog-ID in the SYNC message (5feb6486792a, the one negotiated via
COMEDIA), the AS uses a wrong value (4hrn7490012c). This causes the
SYNC transaction to fail. First of all, the MS sends a framework-

level 481 message. This response, when given in reply to a SYNC
message, means that the SIP dialog associated with the provided
Dialog-ID (the wrong identifier) does not exist. The Control Channel

must be torn down as a consequence, and so the MS also closes the TCP
connection it received the SYNC message from. The AS at this point

is supposed to tear down its SIP control dialog as well, and so it

sends a SIP BYE to the MS.

Amirante, et al. Informational [Page 18]

RFC 7058 CFW Call Flow Examples November 2013

The actual transaction is presented below.

1. AS -> MS (CFW SYNC with wrong Dialog-ID)

CFW 2b4dd8724f27 SYNC
Dialog-ID: 4hrn7490012c
Keep-Alive: 100

Packages: msc-ivr/1.0,msc-mixer/1.0

2. AS <- MS (CFW 481)

CFW 2b4dd8724f27 481
The second scenario is depicted in Figure 9.

AS MS

I I

| 1. CONTROL |
[++++++++++ bR SS|
| |--+ First transaction

| | |is nota SYNC

| |[<-+

| 2. 403 |
|<<t++++++++tttt bbbttt bt

I I
|<-XX- CLOSE TCP CONNECTION -XX-|

I I
| SIP BYE |
| >

Figure 9: Incorrect First Transaction: Sequence Diagram

This scenario demonstrates another common mistake that could occur
when trying to set up a Control Channel. In fact, [RFC6230] mandates
that the first transaction after the COMEDIA negotiation be a SYNC to
conclude the setup. If the AS, instead of triggering a SYNC message
as expected, sends a different message to the MS (in the example
below, it tries to send an <audit> message addressed to the IVR
Control Package), the MS treats it like an error. As a consequence,
the MS replies with a framework-level 403 message (Forbidden) and,
just as before, closes the TCP connection and waits for the related
SIP control dialog to be torn down.

Amirante, et al. Informational [Page 19]

RFC 7058 CFW Call Flow Examples November 2013

The actual transaction is presented below.

1. AS -> MS (CFW CONTROL instead of SYNC)

CFW 101fbbd62c35 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 78

<mscivr version="1.0" xmIns="urn:ietf:params:xml:ns:msc-ivr">

<audit/>
</mscivr>

2. AS <- MS (CFW 403 Forbidden)

CFW 101fbbd62c35 403
6. Use-Case Scenarios and Examples
The following scenarios have been chosen for their common presence in
many rich real-time multimedia applications. Each scenario is

depicted as a set of call flows involving both the SIP/SDP signaling
(UACs<->AS<->MS) and the Control Channel communication (AS<->MS).

Amirante, et al. Informational [Page 20]

RFC 7058 CFW Call Flow Examples November 2013

All the examples assume that a Control Channel has already been
correctly established and SYNCed between the reference AS and MS.
Also, unless stated otherwise, the same User Agent Client (UAC)
session is referenced in all the examples that will be presented in

this document. The UAC session is assumed to have been created as
described in Figure 10:

UAC AS MS

I I

| INVITE (X) | [
e |

| 180 (Ringing) | [

R — |

| |-+ |

| | | Handle app(X) |

I |<-+ I

| | INVITE (Y) as 3PCC |

| >

| [100 (Trying) |

| |< | ,
| | |--+ Negotiate media
| | | | with UAC; map
| | |<-+ tags and labels
| [200 OK |

| < |

| 200 OK | |

R — | |

| ACK [|

|-==mmmmmmmee - > I

| | ACK |

I I >|

I
| << R R R B R R R > > |
| RTP Media Stream(s) flowing
| << R R R R T T R B R > >

Figure 10: 3PCC Sequence Diagram

Note well: This is only an example of a possible approach involving a
Third-Party Call Control (3PCC) negotiation among the UAC, the AS,
and the MS, and as such is not at all to be considered the mandatory
way, nor best common practice, in the presented scenario. [RFC3725]
provides several different solutions and many details about how 3PCC

Amirante, et al. Informational [Page 21]

RFC 7058 CFW Call Flow Examples November 2013

can be realized, with pros and cons. It is also worth pointing out
that the two INVITESs displayed in the figure are different SIP
dialogs.

The UAC first places a call to a SIP URI for which the AS is
responsible. The specific URI is not relevant to the examples, since
the application logic behind the mapping between a URI and the
service it provides is a matter that is important only to the AS.

So, a generic 'sip:mediactriDemo@as.example.com’ is used in all the
examples, whereas the service this URI is associated with in the AS
logic is mapped scenario by scenario to the case under examination.
The UAC INVITE is treated as envisaged in [RFC5567]. The INVITE is
forwarded by the AS to the MS via a third party (e.g., the 3PCC
approach), without the SDP provided by the UAC being touched, in
order to have the session fully negotiated by the MS according to its
description. The MS matches the UAC’s offer with its own

capabilities and provides its answer in a 200 OK. This answer is

then forwarded, again without the SDP contents being touched, by the
AS to the target UAC. This way, while the SIP signaling from the UAC
is terminated in the AS, all the media would start flowing directly
between the UAC and the MS.

As a consequence of this negotiation, one or more media connections
are created between the MS and the UAC. They are then addressed,
when needed, by the AS and the MS by means of the concatenation of
tags, as specified in [RFC6230]. How the identifiers are created and
addressed is explained by using the sample signaling provided in the
following lines.

1. UAC -> AS (SIP INVITE)

INVITE sip:mediactriDemo@as.example.com SIP/2.0

Via: SIP/2.0/UDP 203.0.113.2:5063;rport;branch=z9nG4bK1396873708
From: <sip:Iminiero@users.example.com>;tag=1153573888
To: <sip:mediactriDemo@as.example.com>

Call-ID: 1355333098

CSeq: 20 INVITE

Contact: <sip:Iminiero@203.0.113.2:5063>

Content-Type: application/sdp

Max-Forwards: 70

User-Agent: Linphone/2.1.1 (eXosip2/3.0.3)

Subject: Phone call

Expires: 120

Content-Length: 330

Amirante, et al. Informational [Page 22]

RFC 7058 CFW Call Flow Examples November 2013

v=0

o=Iminiero 123456 654321 IN IP4 203.0.113.2
s=A conversation

c=IN IP4 203.0.113.2

t=00

m=audio 7078 RTP/AVP 0 3 8 101
a=rtpmap:0 PCMU/8000/1
a=rtpmap:3 GSM/8000/1
a=rtpmap:8 PCMA/8000/1
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-11

m=video 9078 RTP/AVP 98
a=rtpmap:98 H263-1998/90000
a=fmtp:98 CIF=1;QCIF=1

2. UAC <- AS (SIP 180 Ringing)

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 203.0.113.2:5063;rport=5063; \
branch=z9hG4bK1396873708

Contact: <sip:mediactriIDemo@as.example.com>

To: <sip:mediactriDemo@as.example.com>;tag=bcd47c32

From: <sip:Iminiero@users.example.com>;tag=1153573888

Call-ID: 1355333098

CSeq: 20 INVITE

Content-Length: O

3. AS -> MS (SIP INVITE)

INVITE sip:MediaServer@ms.example.net:5060;transport=UDP SIP/2.0

Via: SIP/2.0/UDP 203.0.113.1:5060; \
branch=z9hG4bK-d8754z-8723e421ebc45f6b-1---d8754z-;rport

Max-Forwards: 70

Contact: <sip:ApplicationServer@203.0.113.1:5060>

To: <sip:MediaServer@ms.example.net:5060>

From: <sip:ApplicationServer@as.example.com:5060>;tag=10514b7f

Call-ID: NzI0ZjQOZTBIMTEzZMGU1ZjVhMjK5NTIIMmMJImZJEONDQ.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, REGISTER

Content-Type: application/sdp

Content-Length: 330

Amirante, et al. Informational [Page 23]

RFC 7058 CFW Call Flow Examples November 2013

v=0

o=Iminiero 123456 654321 IN IP4 203.0.113.2
s=A conversation

c=IN IP4 203.0.113.2

t=00

m=audio 7078 RTP/AVP 0 3 8 101
a=rtpmap:0 PCMU/8000/1
a=rtpmap:3 GSM/8000/1
a=rtpmap:8 PCMA/8000/1
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-11

m=video 9078 RTP/AVP 98
a=rtpmap:98 H263-1998/90000
a=fmtp:98 CIF=1;QCIF=1

4. AS <- MS (SIP 100 Trying)

SIP/2.0 100 Trying

Via: SIP/2.0/UDP 203.0.113.1:5060; \
branch=z9hG4bK-d8754z-8723e421ebc45f6b-1---d8754z-;rport=5060

To: <sip:MediaServer@ms.example.net:5060>;tag=6a900179

From: <sip:ApplicationServer@as.example.com:5060>;tag=10514b7f

Call-ID: NzI0ZjQOZTBIMTEzMGU1ZjVhMjK5NTIIMMJImMZJEONDQ.

CSeq: 1 INVITE

Content-Length: 0

5. AS <- MS (SIP 200 OK)

SIP/2.0 200 OK

Via: SIP/2.0/UDP 203.0.113.1:5060; \
branch=z9hG4bK-d8754z-8723e421ebc45f6b-1---d8754z-;rport=5060

Contact: <sip:MediaServer@ms.example.net:5060>

To: <sip:MediaServer@ms.example.net:5060>;tag=6a900179

From: <sip:ApplicationServer@as.example.com:5060>;tag=10514b7f

Call-ID: NzI0ZjQOZTBIMTEzMGU1ZjVhMjK5NTIIMMImMZJEONDQ.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, REGISTER

Content-Type: application/sdp

Content-Length: 374

v=0

o=Iminiero 123456 654322 IN IP4 ms.example.net
s=MediaCtrl

c=IN IP4 ms.example.net

t=00

m=audio 63442 RTP/AVP 0 3 8 101

Amirante, et al. Informational [Page 24]

RFC 7058 CFW Call Flow Examples November 2013

a=rtpmap:0 PCMU/8000
a=rtpmap:3 GSM/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15

a=ptime:20

a=label:7eda834

m=video 33468 RTP/AVP 98
a=rtpmap:98 H263-1998/90000
a=fmtp:98 CIF=2
a=label:0132ca2

6. UAC <- AS (SIP 200 OK)

SIP/2.0 200 OK

Via: SIP/2.0/UDP 203.0.113.2:5063;rport=5063; \
branch=z9hG4bK1396873708

Contact: <sip:mediactriDemo@as.example.com>

To: <sip:mediactriDemo@as.example.com>;tag=bcd47c32

From: <sip:Iminiero@users.example.com>;tag=1153573888

Call-ID: 1355333098

CSeq: 20 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, REGISTER

Content-Type: application/sdp

Content-Length: 374

v=0

o=Iminiero 123456 654322 IN IP4 ms.example.net
s=MediaCtrl

c=IN IP4 ms.example.net

t=00

m=audio 63442 RTP/AVP 0 3 8 101
a=rtpmap:0 PCMU/8000
a=rtpmap:3 GSM/8000

a=rtpmap:8 PCMA/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15

a=ptime:20

a=label:7eda834

m=video 33468 RTP/AVP 98
a=rtpmap:98 H263-1998/90000
a=fmtp:98 CIF=2

a=label:0132ca2

Amirante, et al. Informational [Page 25]

RFC 7058 CFW Call Flow Examples November 2013

7. UAC -> AS (SIP ACK)

ACK sip:mediactriIDemo@as.example.com SIP/2.0

Via: SIP/2.0/UDP 203.0.113.2:5063;rport;branch=z9nG4bK1113338059
From: <sip:Iminiero@users.example.com>;tag=1153573888

To: <sip:mediactriDemo@as.example.com>;tag=bcd47c32

Call-ID: 1355333098

CSeq: 20 ACK

Contact: <sip:Iminiero@203.0.113.2:5063>

Max-Forwards: 70

User-Agent: Linphone/2.1.1 (eXosip2/3.0.3)

Content-Length: 0

8. AS -> MS (SIP ACK)
ACK sip:MediaServer@ms.example.net:5060;transport=UDP SIP/2.0
Via: SIP/2.0/UDP 203.0.113.1:5060; \

branch=z9hG4bK-d8754z-5246003419ccd662-1---d8754z-;rport

Max-Forwards: 70
Contact: <sip:ApplicationServer@203.0.113.1:5060>
To: <sip:MediaServer@ms.example.net:5060;tag=6a900179
From: <sip:ApplicationServer@as.example.com:5060>;tag=10514b7f
Call-ID: NzI0ZjQOZTBIMTEzMGU1ZjVhMjK5NTIIMMJImMZJEONDQ.
CSeq: 1 ACK
Content-Length: 0

As a result of the 3PCC negotiation just presented, the following
relevant information is retrieved:

1. The 'From’ and 'To’ tags (10514b7f and 6a900179, respectively) of
the AS<->MS session:

From: <sip:ApplicationServer@as.example.com:5060>;tag=10514b7f

NANNNNNNN

To: <sip:MediaServer@ms.example.net:5060>;tag=6a900179

NNNNNNNN

2. The labels [RFC4574] associated with the negotiated media
connections, in this case an audio stream (7eda834) and a video
stream (0132ca2):
m=audio 63442 RTP/AVP 0 3 8 101

[-]
a=label:7eda834

NANNNNNN

Amirante, et al. Informational [Page 26]

RFC 7058 CFW Call Flow Examples November 2013

m=video 33468 RTP/AVP 98

[]
a=label:0132ca2
NNNNNNN
These four identifiers allow the AS and MS to univocally and
unambiguously address to each other the connections associated with
the related UAC. Specifically:

1. 10514b7f:6a900179, the concatenation of the 'From’ and 'To’ tags
through a colon (:") token, addresses all the media connections
between the MS and the UAC.

2. 10514b7f:6a900179 <-> 7eda834, the association of the previous
value with the label attribute, addresses only one of the media
connections of the UAC session (in this case, the audio stream).
Since, as will be made clearer in the example scenarios, the
explicit identifiers in requests can only address 'from:tag’
connections, an additional mechanism will be required to have a
finer control of individual media streams (i.e., by means of the
<stream> element in package-level requests).

The mapping that the AS makes between the UACs<->AS and the AS<->MS
SIP dialogs is out of scope for this document. We just assume that

the AS knows how to address the right connection according to the

related session it has with a UAC (e.qg., to play an announcement to a
specific UAC). This is obviously very important, since the AS is

responsible for all the business logic of the multimedia application

it provides.

6.1. Echo Test

The echo test is the simplest example scenario that can be achieved
by means of an MS. It basically consists of a UAC directly or
indirectly "talking" to itself. A media perspective of such a

scenario is depicted in Figure 11.

e + A (RTP) R +

| UAC | >| Media |
| A I< | Server |
s + A (RTP) +-------- +

Figure 11: Echo Test: Media Perspective

From the framework point of view, when the UAC'’s leg is not attached
to anything yet, what appears is shown in Figure 12: since there’s no
connection involving the UAC yet, the frames it might be sending are
discarded, and nothing is sent to it (except for silence, if its
transmission is requested).

Amirante, et al. Informational [Page 27]

RFC 7058 CFW Call Flow Examples November 2013

Figure 12: Echo Test: UAC Media Leg Not Attached

Starting from these considerations, two different approaches to the
Echo Test scenario are explored in this document:

1. a Direct Echo Test approach, where the UAC directly talks to
itself.

2. a Recording-based Echo Test approach, where the UAC indirectly
talks to itself.

6.1.1. Direct Echo Test

In the Direct Echo Test approach, the UAC is directly connected to
itself. This means that, as depicted in Figure 13, each frame the MS
receives from the UAC is sent back to it in real time.

MS
o +
UAC | |
0----- B @ |
0----- L — @ |
|
S +

Figure 13: Echo Test: Direct Echo (Self-Connection)

In the framework, this can be achieved by means of the Mixer Control
Package [RFC6505], which is in charge of joining connections and
conferences.

Amirante, et al. Informational [Page 28]

RFC 7058 CFW Call Flow Examples November 2013

A sequence diagram of a potential transaction is depicted in
Figure 14:

UAC AS MS
| | I

| | 1. CONTROL (join UAC to itself) |

| o o A S P
| | [--+ self-

| | | 1join

| | 2. 200 OK |<-+ UAC

| [<<t++++++++H++t+tb bbbt
|

| I
| < <HHHHHEH R > > |
| Everything is now echoed back to the UAC
| <<HHHH R R > > |

Figure 14: Self-Connection: Framework Transaction
The transaction steps have been numbered and are explained below:

0 The AS requests the joining of the connection to itself by sending
to the MS a CONTROL request (1) that is specifically meant for the
conferencing Control Package (msc-mixer/1.0). A <join>request is
used for this purpose, and since the connection must be attached
to itself, both id1 and id2 attributes are set to the same value,

i.e., the connectionid.

o The MS, having checked the validity of the request, enforces the
joining of the connection to itself. This means that all the
frames sent by the UAC are sent back to it. To report the result
of the operation, the MS sends a 200 OK (2) in reply to the AS,
thus ending the transaction. The transaction ended successfully,
as indicated by the body of the message (the 200 status code in
the <response> tag).

Amirante, et al. Informational [Page 29]

RFC 7058 CFW Call Flow Examples November 2013

The complete transaction -- that is, the full bodies of the exchanged
messages -- is provided in the following lines:

1. AS -> MS (CFW CONTROL)

CFW 4fed9bfl47e2 CONTROL
Control-Package: msc-mixer/1.0
Content-Type: application/msc-mixer+xml
Content-Length: 130

<mscmixer version="1.0" xmIns="urn:ietf:params:xml:ns:msc-mixer">

<join id1="10514b7f:6a900179" id2="10514b7f:6a900179"/>
</mscmixer>

2. AS <- MS (CFW 200 OK)

CFW 4fed9bfl47e2 200

Timeout: 10

Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmIns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join successful"/>
</mscmixer>

6.1.2. Echo Test Based on Recording

In the Recording-based Echo Test approach, the UAC is NOT directly
connected to itself, but rather indirectly. This means that, as

depicted in Figure 15, each frame the MS receives from the UAC is
first recorded; then, when the recording process is ended, the whole
recorded frames are played back to the UAC as an announcement.

MS

B +
UAC ||
0----->>---—--- +77> (recording.wav) "+
0----- L S— + | |

|~ v

+--|--—-+ |

+ << +

Figure 15: Echo Test: Recording Involved

Amirante, et al. Informational [Page 30]

RFC 7058 CFW Call Flow Examples November 2013

In the framework, this can be achieved by means of the IVR Control
Package [RFC6231], which is in charge of both the recording and the
playout phases. However, the whole scenario cannot be accomplished
in a single transaction; at least two steps, in fact, need to be
performed:

1. First, a recording (preceded by an announcement, if requested)
must take place.

2. Then, a playout of the previously recorded media must occur.
This means that two separate transactions need to be invoked. A

sequence diagram of a potential multiple transaction is depicted in
Figure 16:

Amirante, et al. Informational [Page 31]

RFC 7058 CFW Call Flow Examples November 2013

AC AS MS

U

I I I

[| Al. CONTROL (record for 10s) |

| [++++++++++H bR SS|

| | A2.202 |

| |[<<++++++++++tt+ttH b4 prepare &
| | [--+ start

| | | | the ,

[| A3. REPORT (terminate) |[<-+ dialog

| |[<<t++++++++tttttt bbb

| | A4. 200 OK |

| o o o I i e 9

I

I I
| <<HHBHHHHHHHHH R |
| "This is an echo test: say something"
| << |

| I |
[R > > |

| 10 s of audio from the UAC are recorded |--+ save
| T R R >>) | ina
[| |<-+ file

| | B1. CONTROL (<recordinfo>) |

| |[<<t++++++++tttHt bR

| Use recorded +--| B2. 200 OK |

| file to play | |++++++++++++tttttttttttttt 55|

| announcement +->| |

[| C1. CONTROL (play recorded) |

| [++++++++++H b SS|

| | C2.202 |

| |[<<+++++++++++++HtHH bt prepare &
| | [--+ start

| | | the

[| C3. REPORT (terminate) |<-+ dialog

| |[<<t++++++++tttttt bbb
| | C4. 200 OK |

| o o o I i i s 9
I

I

I I

<<HHHHHHH

"Can you hear me? It's me, UAC, talking"
| <<HHHHHHHH A |
I I I
| | D1. CONTROL (<promptinfo>) |
| S 2 2 o o o |
[| D2. 200 OK |
| 91
I

Amirante, et al. Informational [Page 32]

RFC 7058 CFW Call Flow Examples November 2013

Figure 16: Recording-Based Echo: Two Framework Transactions

The first obvious difference that stands out when looking at the

diagram is that, unlike the Direct Echo scenario, the MS does not

reply with a 200 message to the CONTROL request originated by the AS.
Instead, a 202 provisional message is sent first, followed by a

REPORT message. The 202+REPORT(s) mechanism is used whenever the MS
wants to tell the AS that the requested operation might take more

time than the limit specified in the definition of the Control

Package. So, while the <join> operation in the Direct Echo scenario

was expected to be fulfilled in a very short time, the IVR request

was assumed to last longer. A 202 message provides a timeout value
and tells the AS to wait a bit, since the preparation of the dialog

might not happen immediately. In this example, the preparation ends
before the timeout, and so the transaction is concluded with a

'REPORT terminate’, which reports the end of the transaction (as did

the 200 message in the previous example). If the preparation took
longer than the timeout, an additional 'REPORT update’ would have
been sent with a new timeout value, and so on, until completion by
means of a ’'REPORT terminate’.

Note that the REPORT mechanism depicted is only shown to clarify its
behavior. In fact, the 202+REPORT mechanism is assumed to be
involved only when the requested transaction is expected to take a

long time (e.g., retrieving a large media file for a prompt from an

external server). In this scenario, the transaction would be

prepared in much less time and as a consequence would very likely be
completed within the context of a simple CONTROL+200 request/
response. The following scenarios will only involve 202+REPORTSs when
they are strictly necessary.

Regarding the dialog itself, note how the AS-originated CONTROL
transactions are terminated as soon as the requested dialogs start.

As specified in [RFC6231], the MS uses a framework CONTROL message to
report the result of the dialog and how it has proceeded. The two
transactions (the AS-generated CONTROL request and the MS-generated
CONTROL event) are correlated by means of the associated dialog

identifier, as explained below. As before, the transaction steps

have been numbered. The two transactions are distinguished by the
preceding letter (A,B=recording, C,D=playout).

0 The AS, as a first transaction, invokes a recording on the UAC
connection by means of a CONTROL request (Al). The body is for
the IVR package (msc-ivr/1.0) and requests the start
(<dialogstart>) of a new recording context (<record>). The
recording must be preceded by an announcement (<prompt>), must not
last longer than 10 s (maxtime), and cannot be interrupted by a
DTMF tone (dtmfterm=false). This is only done once (the missing

Amirante, et al. Informational [Page 33]

RFC 7058 CFW Call Flow Examples November 2013

repeatCount attribute is 1 by default for a <dialog>), which means
that if the recording does not succeed the first time, the
transaction must fail. A video recording is requested
(considering that the associated connection includes both audio
and video and no restriction is enforced on streams to record),
which is to be fed by both of the negotiated media streams. A
beep has to be played (beep=true) right before the recording
starts, to notify the UAC.

0 As seen before, the MS sends a provisional 202 response to let the
AS know that the operation might need some time.

o In the meantime, the MS prepares the dialog (e.qg., by retrieving
the announcement file, for which an HTTP URL is provided, and by
checking that the request is well formed) and if all is fine it
starts it, notifying the AS with a new REPORT (A3) with a
terminated status. As explained previously, interlocutory REPORT
messages with an update status would have been sent if the
preparation took longer than the timeout provided in the 202
message (e.g., if retrieving the resource via HTTP took longer
than expected). Once the dialog has been prepared and started,
the UAC connection is then passed to the IVR package, which first
plays the announcement on the connection, followed by a beep, and
then records all the incoming frames to a buffer. The MS also
provides the AS with a unique dialog identifier (dialogid) that
will be used in all subsequent event notifications concerning the
dialog it refers to.

0 The AS acks the latest REPORT (A4), thus terminating this
transaction, and waits for the results.

0 Once the recording is over, the MS prepares a notification CONTROL
(B1). The <event> body is prepared with an explicit reference to
the previously provided dialog identifier, in order to make the AS
aware of the fact that the notification is related to that
specific dialog. The event body is then completed with the
recording-related information (<recordinfo>), in this case the
path to the recorded file (here, an HTTP URL) that can be used by
the AS for anything it needs. The payload also contains
information about the prompt (<promptinfo>), which is, however,
not relevant to the scenario.

0 The AS concludes this first recording transaction by acking the
CONTROL event (B2).

Amirante, et al. Informational [Page 34]

RFC 7058 CFW Call Flow Examples November 2013

Now that the first transaction has ended, the AS has the 10-s
recording of the UAC talking and can let the UAC hear it by having
the MS play it for the UAC as an announcement:

o In the second transaction, the AS invokes a playout on the UAC
connection by means of a new CONTROL request (C1). The body is
once again for the IVR package (msc-ivr/1.0), but this time it
requests the start (<dialogstart>) of a new announcement context
(<prompt>). The file to be played is the file that was recorded
before (<media>).

0 Again, the usual provisional 202 (C2) takes place.

o In the meantime, the MS prepares and starts the new dialog, and
notifies the AS with a new REPORT (C3) with a terminated status.
The connection is then passed to the IVR package, which plays the
file on it.

0 The AS acks the terminating REPORT (C4), now waiting for the
announcement to end.

0 Once the playout is over, the MS sends a CONTROL event (D1) that
contains in its body (<promptinfo>) information about the just-
concluded announcement. As before, the proper dialogid is used as
a reference to the correct dialog.

0 The AS concludes this second and last transaction by acking the
CONTROL event (D2).

Amirante, et al. Informational [Page 35]

RFC 7058 CFW Call Flow Examples November 2013

As in the previous paragraph, the whole CFW interaction is provided
for a more in-depth evaluation of the protocol interaction.

Al. AS -> MS (CFW CONTROL, record)

CFW 796d83aalce4 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 265

<mscivr version="1.0" xmIns="urn:ietf:params:xml:ns:msc-ivr">
<dialogstart connectionid="10514b7f.:6a900179">
<dialog>
<prompt>
<media
loc="http://www.example.com/demo/echorecord.mpg"/>
</prompt>
<record beep="true" maxtime="10s"/>
</dialog>
</dialogstart>
</mscivr>

A2. AS <- MS (CFW 202)

CFW 796d83aalce4 202
Timeout: 5

A3. AS <- MS (CFW REPORT terminate)

CFW 796d83aalce4 REPORT

Seq: 1

Status: terminate

Timeout: 25

Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<response status="200" reason="Dialog started"
dialogid="68d6569"/>
</mscivr>

A4. AS -> MS (CFW 200, ACK to 'REPORT terminate’)

CFW 796d83aalce4 200
Seq: 1

Amirante, et al. Informational [Page 36]

RFC 7058 CFW Call Flow Examples November 2013

B1. AS <- MS (CFW CONTROL event)

CFW 0eb1678c0Obfc CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 403

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<event dialogid="68d6569">
<dialogexit status="1" reason="Dialog successfully completed">
<promptinfo duration="9987" termmode="completed"/>
<recordinfo duration="10017" termmode="maxtime">
<mediainfo
loc="http://www.example.net/recordings/recording-68d6569.mpg"
type="video/mpeg" size="591872"/>
</recordinfo>
</dialogexit>
</event>
</mscivr>

B2. AS -> MS (CFW 200, ACK to 'CONTROL event’)

CFW 0eb1678c0bfc 200

C1. AS -> MS (CFW CONTROL, play)

CFW 1632eead7e3b CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 241

<mscivr version="1.0" xmIns="urn:ietf:params:xml:ns:msc-ivr">
<dialogstart connectionid="10514b7f:6a900179">
<dialog>
<prompt>
<media
loc="http://www.example.net/recordings/recording-68d6569.mpg"/>
</prompt>
</dialog>
</dialogstart>
</mscivr>

Amirante, et al. Informational [Page 37]

RFC 7058 CFW Call Flow Examples November 2013

C2. AS <- MS (CFW 202)

CFW 1632eead7e3b 202
Timeout: 5

C3. AS <- MS (CFW REPORT terminate)

CFW 1632eead7e3b REPORT

Seq:1

Status: terminate

Timeout: 25

Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmIns="urn:ietf:params:xml:ns:msc-ivr">
<response status="200" reason="Dialog started"
dialogid="5f5ch45"/>
</mscivr>

C4. AS -> MS (CFW 200, ACK to 'REPORT terminate’)

CFW 1632eead7e3b 200
Seq: 1

D1. AS <- MS (CFW CONTROL event)

CFW 502a5fd83db8 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 230

<mscivr version="1.0" xmIns="urn:ietf:params:xml:ns:msc-ivr">
<event dialogid="5f5ch45">
<dialogexit status="1" reason="Dialog successfully completed">
<promptinfo duration="10366" termmode="completed"/>
</dialogexit>
</event>
</mscivr>

D2. AS -> MS (CFW 200, ACK to 'CONTROL event’)

CFW 502a5fd83db8 200

Amirante, et al. Informational [Page 38]

RFC 7058 CFW Call Flow Examples November 2013

6.2. Phone Call

Another scenario that might involve the interaction between an AS and
an MS is the classic phone call between two UACs. In fact, even

though the most straightforward way to achieve this would be to let

the UACs negotiate the session and the media to be used between them,
there are cases when the services provided by an MS might also prove
useful for such phone calls.

One of these cases is when the two UACs have nho common supported
codecs: having the two UACs directly negotiate the session would
result in a session with no available media. Involving the MS as a
transcoder would in this case still allow the two UACs to

communicate. Another interesting case is when the AS (or any other
entity on whose behalf the AS is working) is interested in

manipulating or monitoring the media session between the UACs, e.g.,
to record the conversation. A similar scenario will be dealt with in
Section 6.2.2.

Before looking at how such a scenario might be accomplished by means
of the Media Control Channel Framework, it is worth mentioning what
the SIP signaling involving all the interested parties might look

like. Infact, in such a scenario, a 3PCC approach is absolutely

needed. An example is provided in Figure 17. Again, the presented
example is not at all to be considered best common practice when 3PCC
is needed in a MEDIACTRL-based framework. It is only described in
order to help the reader more easily understand what the requirements
are on the MS side, and as a consequence what information might be
required. [RFC3725] provides a much more detailed overview on 3PCC
patterns in several use cases. Only an explanatory sequence diagram
is provided, without delving into the details of the exchanged SIP
messages.

Amirante, et al. Informational [Page 39]

RFC 7058 CFW Call Flow Examples November 2013

I
ACK (offer B) | |
Call-ld: B | |

UAC(1) UAC(2) AS MS
I I I I
| INVITE (offer A) | |
| Call-ld: A | | [
| > |
| [100 Trying | |
| | Call-ld: A | [
< | |
| | INVITE (no offer) | |
| | Call-ld: B | [
| D — |
| | 180 Ringing [|
| | Call-1d: B | [
| e |
| [180 Ringing | |
| | Call-ld: A | [
< | |
| [| INVITE (offer A) |
| | | Call-ld: C |
I I I >|
| [[200 OK (offer A) |
| | [Call-ld: C |
I I |< I
I I | ACK I
		Call-ld: C
		>
	200 OK (offer B)	
	Call-1d: B	[
R >		
[INVITE (offer B)	
		Call-1d: D
		>
[[200 OK (offer B)		
	[Call-ld: D	
	<	
I I	ACK I	
		Call-1d: D
I I >|
I I
I I

Amirante, et al. Informational [Page 40]

RFC 7058 CFW Call Flow Examples November 2013

e		
	200 OK (offer A)	
	Call-ld:A	
<	I	
ACK		

| Call-Id: A | | |

|

|

Figure 17: Phone Call: Example of 3PCC

In this example, UAC1 wants to place a phone call to UAC2. To do so,
it sends an INVITE to the AS with its offer A. The AS sends an
offerless INVITE to UAC2. When UAC2 responds with a 180, the same
message is forwarded by the AS to UAC1 to notify it that the callee

is ringing. In the meantime, the AS also adds a leg to the MS for
UAC1, as explained at the beginning of Section 6. To do so, it of
course uses the offer A that UAC1 made. Once UAC2 accepts the call
by providing its own offer B in the 200, the AS also adds a leg for

offer B to the MS. At this point, the negotiation can be completed

by providing the two UACs with the SDP answer negotiated by the MS
with them (A’ and B’, respectively).

Of course, this is only one way to deal with the signaling and shall
not be considered an absolutely mandatory approach.

Once the negotiation is over, the two UACs are not in communication
yet. In fact, it's up to the AS now to actively trigger the MS to
somehow attach their media streams to each other, by referring to the
connection identifiers associated with the UACs as explained
previously. This document presents two different approaches that
might be followed, according to what needs to be accomplished. A
generic media perspective of the phone call scenario is depicted in
Figure 18. The MS is basically in the media path between the

two UACs.

#eeeet UACL (RTP) +emeoeee + UACL (RTP) +--mmet

| UAC | >| Media | >| UAC |
| 1 |< |Server |<:::::::::::::::::::| 2 |
Fomee + UAC2 (RTP) +-------- + UAC2 (RTP) +------- +

Figure 18: Phone Call: Media Perspective

Amirante, et al. Informational [Page 41]

RFC 7058 CFW Call Flow Examples November 2013

From the framework point of view, when the UACS’ legs are not
attached to anything yet, what appears is shown in Figure 19: since
there are no connections involving the UACs yet, the frames they
might be sending are discarded, and nothing is sent to them (except
for silence, if its transmission is requested).

MS
e — +
UAC 1 | | UAC 2
O----- P X), CHT >>.... 0
O..... <<...... X X-====== <<= (0]
I I
S +

Figure 19: Phone Call: UAC Media Leg Not Attached
6.2.1. Direct Connection

The Direct Connection approach is the easiest, and a more
straightforward, approach to get the phone call between the two UACs
to work. The idea is basically the same as that of the Direct Echo
approach. A <join> directive is used to directly attach one UAC to

the other, by exploiting the MS to only deal with the transcoding/
adaption of the flowing frames, if needed.

This approach is depicted in Figure 20.

MS
S +
UAC 1 [| UAC 2
0----- 5 T e DD R T— > S 0
0----- L — I G S <<Kemmme o
I I
S — +

Figure 20: Phone Call: Direct Connection

Amirante, et al. Informational [Page 42]

RFC 7058 CFW Call Flow Examples November 2013

UAC1 UAC2 AS MS

I I I

| | 1. CONTROL (join UAC1 to UAC2) |

| e o o e I 1 1 1 1 e
I I |--+ join

I | | | UACL

| | 2. 200 OK |<-+ UAC2

| S S o
I

UAC1 can hear UAC2 talking
<<HHHHHHHH R R S S |

I
| <<H#HHHAHHHHHHH R > > |
| UAC2 can hear UAC1 talking
| <<HHHHHHEH T P > > |
I

I

I

I

I

I

I

I I I

| <<HBHHHHEHHEH > > |
I

I

I

I

I

I

I

|[<*talking*>| | |

Figure 21: Direct Connection: Framework Transactions

The framework transactions needed to accomplish this scenario are
very trivial and easy to understand. They are basically the same as
those presented in the Direct Echo Test scenario; the only difference

is in the provided identifiers. In fact, this time the MS is not

supposed to attach the UACs’ media connections to themselves but has
to join the media connections of two different UACs, i.e., UAC1 and
UAC2. This means that in this transaction, id1 and i2 will have to
address the media connections of UAC1 and UAC2. In the case of a
successful transaction, the MS takes care of forwarding all media
coming from UAC1 to UAC2 and vice versa, transparently taking care of
any required transcoding steps, if necessary.

1. AS -> MS (CFW CONTROL)

CFW 0600855d24c8 CONTROL
Control-Package: msc-mixer/1.0
Content-Type: application/msc-mixer+xml
Content-Length: 130

<mscmixer version="1.0" xmIns="urn:ietf:params:xml:ns:msc-mixer">

<join id1="10514b7f:6a900179" id2="e1e1427c:1c998d22"/>
</mscmixer>

Amirante, et al. Informational [Page 43]

RFC 7058 CFW Call Flow Examples November 2013

2. AS <- MS (CFW 200 OK)

CFW 0600855d24c8 200

Timeout: 10

Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmIns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join successful"/>
</mscmixer>

Such a simple approach has its drawbacks. For instance, with such an
approach, recording a conversation between two users might be tricky

to accomplish. In fact, since no mixing would be involved, only the

single connections (UAC1<->MS and UAC2<->MS) could be recorded. If
the AS wants a conversation-recording service to be provided anyway,

it needs additional business logic on its side. An example of such a

use case is provided in Section 6.2.3.

6.2.2. Conference-Based Approach

The approach described in Section 6.2.1 surely works for a basic
phone call but, as explained previously, might have some drawbacks
whenever more advanced features are needed. For instance, one can’t
record the whole conversation -- only the single connections -- since

no mixing is involved. Additionally, even the single task of playing

an announcement over the conversation could be complex, especially if
the MS does not support implicit mixing over media connections. For
this reason, in more advanced cases a different approach might be
taken, like the conference-based approach described in this section.

The idea is to use a mixing entity in the MS that acts as a bridge
between the two UACs. The presence of this entity allows more
customization of what needs to be done with the conversation, like
the recording of the conversation that has been provided as an
example. The approach is depicted in Figure 22. The mixing
functionality in the MS will be described in more detail in the
following section (which deals with many conference-related
scenarios), so only some hints will be provided here for basic
comprehension of the approach.

Amirante, et al. Informational [Page 44]

RFC 7058 CFW Call Flow Examples November 2013

MS

Fommmm e +
UAC A | [UACB
0----->>-mmmmeo +S{#b >SS0
o< <u{#I<T - <<-----0

o

o

+omeee- fmmmmeee +

.+::::> (conversation.wav)
Figure 22: Phone Call: Conference-Based Approach

To identify a single sample scenario, let's consider a phone call
that the AS wants to record.

Figure 23 shows how this could be accomplished in the Media Control
Channel Framework. This example, as usual, hides the previous
interaction between the UACs and the AS and instead focuses on the
Control Channel operations and what follows.

Amirante, et al. Informational [Page 45]

RFC 7058 CFW Call Flow Examples November 2013

UAC1 UAC2 AS MS

I I I

| | Al. CONTROL (create conference) |

| |++++++++++++++++++++++++++++++++>>|
| | |--+ create

| | | | confand

| | A2.200 OK (conferenceid=Y) |<-+ its ID
| S o 2 o o e o e |
I
I
I
I
I
I

I I
| B1. CONTROL (record for 10800 s) |
0 I 1 > O
| |--+ start
| | | the
| B2. 200 OK |<-+ dialog
| R o e o o
Recording +--| |
of the mix | | |
has started +->| [
| | C1. CONTROL (join UAC1<->confY) |
| o A o o S i]|
I I |-+ join
| | | |UACL &
| | C2. 200 OK |<-+ confY
| G B e o
I

I I
<< T > > |
Now UACL1 is mixed in the conference
S<HBHHBHHHHEH > > |

I I I

| | D1. CONTROL (join UAC2<->confY) |

| o i A A S P
I I |-+ join

| | | |UAC2 &

| | D2. 200 OK |<-+ confY

| |<<t+++++++Htt bbb
I

I I
| <<HHHHHHH T > > |
| Now UAC2 is mixed too
| <HHA R > > |

<*talking*>| | |

Figure 23: Conference-Based Approach: Framework Transactions

Amirante, et al. Informational [Page 46]

RFC 7058 CFW Call Flow Examples November 2013

The AS uses two different packages to accomplish this scenario: the
Mixer package (to create the mixing entity and join the UACs) and the
IVR package (to record what happens in the conference). The
framework transaction steps can be described as follows:

o First of all, the AS creates a new hidden conference by means of a
<createconference> request (A1). This conference is properly
configured according to the use it is assigned to. In fact, since
only two participants will be joined to it, both
‘reserved-talkers’ and 'reserved-listeners’ are set to 2, just as
the 'n’ value for the N-best audio mixing algorithm. The video
layout is also set accordingly (<single-view>/<dual-view>).

0 The MS sends notification of the successful creation of the new
conference in a 200 framework message (A2). The identifier
assigned to the conference, which will be used in subsequent
requests addressed to it, is 6013f1le.

0 The AS requests a new recording for the newly created conference.
To do so, it places a proper request to the IVR package (B1). The
AS is interested in a video recording (type=video/mpeg), which
must not last longer than 3 hours (maxtime=10800s), after which
the recording must end. Additionally, no beep must be played on
the conference (beep=false), and the recording must start
immediately whether or not any audio activity has been reported
(vadinitial=false is the default value for <record>).

o The transaction is handled by the MS, and when the dialog has been
successfully started, a 200 OK is issued to the AS (B2). The
message contains the dialogid associated with the dialog
(00b29fh), which the AS must refer to for later notifications.

0 At this point, the AS attaches both UACs to the conference with
two separate <join> directives (C1/D1). When the MS confirms the
success of both operations (C2/D2), the two UACs are actually in
contact with each other (even though indirectly, since a hidden
conference they’re unaware of is on their path), and their media
contribution is recorded.

Amirante, et al. Informational [Page 47]

RFC 7058 CFW Call Flow Examples November 2013

Al. AS -> MS (CFW CONTROL, createconference)

CFW 238e1f2946e8 CONTROL
Control-Package: msc-mixer
Content-Type: application/msc-mixer+xml
Content-Length: 395

<mscmixer version="1.0" xmIns="urn:ietf:params:xml:ns:msc-mixer">
<createconference reserved-talkers="2" reserved-listeners="2">
<audio-mixing type="nbest" n="2"/>
<video-layouts>
<video-layout min-participants="1">
<single-view/>
</video-layout>
<video-layout min-participants="2">
<dual-view/>
</video-layout>
</video-layouts>
<video-switch>
<controller/>
</video-switch>
</createconference>
</mscmixer>

A2. AS <- MS (CFW 200 OK)

CFW 238e1f2946€e8 200

Timeout: 10

Content-Type: application/msc-mixer+xmi
Content-Length: 151

<mscmixer version="1.0" xmIns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Conference created"
conferenceid="6013fle"/>
</mscmixer>

Amirante, et al. Informational [Page 48]

RFC 7058 CFW Call Flow Examples November 2013

B1l. AS -> MS (CFW CONTROL, record)

CFW 515f007c5bd0 CONTROL
Control-Package: msc-ivr
Content-Type: application/msc-ivr+xml
Content-Length: 226

<mscivr version="1.0" xmIns="urn:ietf:params:xml:ns:msc-ivr">
<dialogstart conferenceid="6013fle">
<dialog>
<record beep="false" type="video/mpeg" maxtime="10800s"/>
</dialog>
</dialogstart>
</mscivr>

B2. AS <- MS (CFW 200 OK)

CFW 515f007¢5bd0 200

Timeout: 10

Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmIns="urn:ietf:params:xml:ns:msc-ivr">

<response status="200" reason="Dialog started" dialogid="00b29fb"/>
</mscivr>

C1. AS -> MS (CFW CONTROL, join)

CFW 0216231b1f16 CONTROL
Control-Package: msc-mixer
Content-Type: application/msc-mixer+xml
Content-Length: 123

<mscmixer version="1.0" xmIns="urn:ietf:params:xml:ns:msc-mixer">

<join id1="10514b7f:6a900179" id2="6013f1le"/>
</mscmixer>

Amirante, et al. Informational [Page 49]

RFC 7058 CFW Call Flow Examples November 2013

C2. AS <- MS (CFW 200 OK)

CFW 0216231b1f16 200

Timeout: 10

Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmIns="urn:ietf:params:xml:ns:msc-mixer">

<response status="200" reason="Join successful"/>
</mscmixer>

D1. AS -> MS (CFW CONTROL, join)

CFW 140e0f763352 CONTROL
Control-Package: msc-mixer
Content-Type: application/msc-mixer+xml
Content-Length: 124

<mscmixer version="1.0" xmIns="urn:ietf:params:xml:ns:msc-mixer">

<join id1="219782951:0b9d3347" id2="6013f1e"/>
</mscmixer>

D2. AS <- MS (CFW 200 OK)

CFW 140e0f763352 200

Timeout: 10

Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmIns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join successful"/>
</mscmixer>

The recording of the conversation can subsequently be accessed by the
AS by waiting for an event notification from the MS. This event,

which will be associated with the previously started recording

dialog, will contain the URI of the recorded file. Such an event may

be triggered by either a natural completion of the dialog (e.g., the

dialog has reached its programmed 3 hours) or any interruption of the
dialog itself (e.g., the AS actively requests that the recording be
interrupted, since the call between the UACs ended).

Amirante, et al. Informational [Page 50]

RFC 7058 CFW Call Flow Examples November 2013

6.2.3. Recording a Conversation

The previous section described how to take advantage of the
conferencing functionality of the Mixer package in order to allow the
recording of phone calls in a simple way. However, using a dedicated
mixer just for a phone call might be considered overkill. This

section shows how recording a conversation and subsequently playing
it out can be accomplished without a mixing entity involved in the

call, i.e., by using the Direct Connection approach as described in
Section 6.2.1.

As explained previously, if the AS wants to record a phone call
between two UACs, the use of just the <join> directive without a
mixer forces the AS to just rely on separate recording commands.
That is, the AS can only instruct the MS to separately record the
media flowing on each media leg: a recording for all the data coming
from UAC